A New Gene Family Diagnostic for Intracellular Biomineralization of Amorphous Ca Carbonates by Cyanobacteria

Archive ouverte

Benzerara, Karim | Duprat, Elodie | Bitard-Feildel, Tristan | Caumes, Géraldine | Cassier-Chauvat, Corinne | Chauvat, Franck | Dezi, Manuela | Diop, Seydina Issa | Gaschignard, Geoffroy | Görgen, Sigrid | Gugger, Muriel | López-García, Purificación | Millet, Maxime | Skouri-Panet, Fériel | Moreira, David | Callebaut, Isabelle

Edité par CCSD ; Society for Molecular Biology and Evolution -

International audience. Cyanobacteria have massively contributed to carbonate deposition over the geological history. They are traditionally thought to biomineralize CaCO3 extracellularly as an indirect byproduct of photosynthesis. However, the recent discovery of freshwater cyanobacteria-forming intracellular amorphous calcium carbonates (iACC) challenges this view. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and evolutionary history remain elusive. Here, using comparative genomics, we identify a new gene (ccyA) and protein family (calcyanin) possibly associated with cyanobacterial iACC biomineralization. Proteins of the calcyanin family are composed of a conserved C-terminal domain, which likely adopts an original fold, and a variable N-terminal domain whose structure allows differentiating four major types among the 35 known calcyanin homologs. Calcyanin lacks detectable full-length homologs with known function. The overexpression of ccyA in iACC-lacking cyanobacteria resulted in an increased intracellular Ca content. Moreover, ccyA presence was correlated and/or colocalized with genes involved in Ca or HCO3− transport and homeostasis, supporting the hypothesis of a functional role of calcyanin in iACC biomineralization. Whatever its function, ccyA appears as diagnostic of intracellular calcification in cyanobacteria. By searching for ccyA in publicly available genomes, we identified 13 additional cyanobacterial strains forming iACC, as confirmed by microscopy. This extends our knowledge about the phylogenetic and environmental distribution of cyanobacterial iACC biomineralization, especially with the detection of multicellular genera as well as a marine species. Moreover, ccyA was probably present in ancient cyanobacteria, with independent losses in various lineages that resulted in a broad but patchy distribution across modern cyanobacteria.

Suggestions

Du même auteur

Biomineralization of intracelllar amorphous calcium carbonates (ACC) by bacteria: molecular mechanisms, evolutionary history and environmental significance

Archive ouverte | Benzerara, Karim | CCSD

International audience. The biomineralization of amorphous calcium carbonates (ACC) has been abundantly documented in eukaryotes. ACC appears as a key precursor phase in the formation of most carbonate biominerals a...

Diel changes in the expression of a marker gene and candidate genes for intracellular amorphous CaCO 3 biomineralization in Microcystis

Archive ouverte | Bruley, Apolline | CCSD

Phylogenetically diverse cyanobacteria biomineralize intracellular amorphous calcium carbonate (iACC) inclusions. This includes several genotypes of the Microcystis genus, a potentially toxic, bloom-forming cyanobacterium found wo...

AlphaFold2 ‐guided description of CoBaHMA , a novel family of bacterial domains within the heavy‐metal‐associated superfamily

Archive ouverte | Gaschignard, Geoffroy | CCSD

International audience. Abstract Three‐dimensional (3D) structure information, now available at the proteome scale, may facilitate the detection of remote evolutionary relationships in protein superfamilies. Here, w...

Chargement des enrichissements...