Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study

Archive ouverte

López-Méndez, Blanca | Baron, Bruno | Brautigam, Chad | Jowitt, Thomas | Knauer, Stefan | Uebel, Stephan | Williams, Mark | Sedivy, Arthur | Abian, Olga | Abreu, Celeste | Adamczyk, Malgorzata | Bal, Wojciech | Berger, Sylvie | Buell, Alexander | Carolis, Carlo | Daviter, Tina | Fish, Alexander | Garcia-Alai, Maria | Guenther, Christian | Hamacek, Josef | Holková, Jitka | Houser, Josef | Johnson, Chris | Kelly, Sharon | Leech, Andrew | Mas, Caroline | Matulis, Daumantas | Mclaughlin, Stephen | Montserret, Roland | Nasreddine, Rouba | Nehmé, Reine | Nguyen, Quyen | Ortega-Alarcón, David | Perez, Kathryn | Pirc, Katja | Piszczek, Grzegorz | Podobnik, Marjetka | Rodrigo, Natalia | Rokov-Plavec, Jasmina | Schaefer, Susanne | Sharpe, Tim | Southall, June | Staunton, David | Tavares, Pedro | Vanek, Ondrej | Weyand, Michael | Wu, Di

Edité par CCSD ; Springer Verlag (Germany) -

International audience. Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments , employing a standard operation procedure and centrally prepared samples. A protein–small molecule interaction, a newly developed protein–protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method.

Suggestions

Du même auteur

A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca2+ and Mg2+ binding to EDTA

Archive ouverte | Velazquez-Campoy, Adrian | CCSD

International audience. A small-scale ITC benchmarking study was performed involving 9 biophysics laboratories/facilities, to evaluate interlaboratory and intra-laboratory basal levels of uncertainty. Our prime goal...

A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation

Archive ouverte | Zhao, Huaying | CCSD

International audience. Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, report...

Polyethylene glycol crowding effect on hyaluronidase activity monitored by capillary electrophoresis

Archive ouverte | Nasreddine, Rouba | CCSD

International audience. To mimic the activity of hyaluronidase in natural environment, the hydrolysis of hyaluronic acid (HA) by hyaluronidase was investigated for the first time in the presence of crowding agents u...

Chargement des enrichissements...