On the permeation of large organic cations through the pore of ATP-gated P2X receptors

Archive ouverte

Harkat, Mahboubi | Peverini, Laurie | Cerdan, Adrien | Dunning, Kate | Beudez, Juline | Martz, Adeline | Calimet, Nicolas | Specht, Alexandre | Cecchini, Marco | Chataigneau, Thierry | Grutter, Thomas

Edité par CCSD ; National Academy of Sciences -

International audience. Pore dilation is thought to be a hallmark of purinergic P2X receptors. The most commonly held view of this unusual process posits that under prolonged ATP exposure the ion pore expands in a striking manner from an initial small-cation conductive state to a dilated state, which allows the passage of larger synthetic cations, such as N -methyl- d -glucamine (NMDG + ). However, this mechanism is controversial, and the identity of the natural large permeating cations remains elusive. Here, we provide evidence that, contrary to the time-dependent pore dilation model, ATP binding opens an NMDG + -permeable channel within milliseconds, with a conductance that remains stable over time. We show that the time course of NMDG + permeability superimposes that of Na + and demonstrate that the molecular motions leading to the permeation of NMDG + are very similar to those that drive Na + flow. We found, however, that NMDG + “percolates” 10 times slower than Na + in the open state, likely due to a conformational and orientational selection of permeating molecules. We further uncover that several P2X receptors, including those able to desensitize, are permeable not only to NMDG + but also to spermidine, a large natural cation involved in ion channel modulation, revealing a previously unrecognized P2X-mediated signaling. Altogether, our data do not support a time-dependent dilation of the pore on its own but rather reveal that the open pore of P2X receptors is wide enough to allow the permeation of large organic cations, including natural ones. This permeation mechanism has considerable physiological significance.

Consulter en ligne

Suggestions

Du même auteur

Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel

Archive ouverte | Habermacher, Chloé | CCSD

International audience. P2X receptors function by opening a transmembrane pore in response to extracellular ATP. Recent crystal structures solved in apo and ATP-bound states revealed molecular motions of the extrace...

New Insights Into Permeation of Large Cations Through ATP-Gated P2X Receptors

Archive ouverte | Peverini, Laurie | CCSD

International audience

P2X7 Receptors and TMEM16 Channels Are Functionally Coupled with Implications for Macropore Formation and Current Facilitation

Archive ouverte | Dunning, Kate | CCSD

International audience. P2X7 receptors (P2X7) are cationic channels involved in many diseases. Following their activation by extracellular ATP, distinct signaling pathways are triggered, which lead to various physio...

Chargement des enrichissements...