Chromones bearing amino acid residues: Easily accessible and potent inhibitors of the breast cancer resistance protein ABCG2

Archive ouverte

Roussel, Emile | Moréno, Alexis | Altounian, Nicolas | Philouze, Christian | Pérès, Basile | Thomas, Aline | Renaudet, Olivier | Falson, Pierre | Boumendjel, Ahcène

Edité par CCSD ; Elsevier -

International audience. The Breast Cancer Resistance Protein (BCRP/ABCG2) belongs to the G class of ABC (ATP-Binding Cassette) proteins, which is known as one of the main transporters involved in the multidrug resistance (MDR) phenotype that confer resistance to anticancer drugs. The aim of this study was to design, synthesize and develop new potent and selective inhibitors of BCRP that can be used to abolish MDR and potentialize clinically used anticancer agents. In previous reports, we showed the importance of chromone scaffold and hydrophobicity for the inhibition of ABC transporters. In the present study we report the design and development of chromones linked to one or two amino acids residues that are either hydrophobic or found in the structure of FTC, one of most potent (but highly toxic) inhibitors of BCRP. Herewith, we report the synthesis and evaluation of 13 compounds. The studied molecules were found to be not toxic and showed strong inhibition activity as well as high selectivity toward BCRP. The highest activity was obtained with the chromone bearing a valine residue (9c) which showed an inhibition activity against BCRP of 50 nM. The rationalization of the inhibition potential of the most active derivatives was performed through docking studies. Taken together, the ease of synthesis and the biological profile of these compounds render them as promising candidates for further development in the field of anticancer therapy.

Suggestions

Du même auteur

Inhibitors of ABCG2-mediated multidrug resistance: Lead generation through computer-aided drug design

Archive ouverte | Goracci, Laura | CCSD

International audience. Human breast cancer resistance protein (BCRP), known also as ABCG2, plays a major role in multiple drug resistance (MDR) in tumor cells. Through this ABC transporter, cancer cells acquire the...

Optimization of the chromone scaffold through QSAR and docking studies: Identification of potent inhibitors of ABCG2

Archive ouverte | Roussel, Emile | CCSD

International audience

Molecular analysis of the massive GSH transport mechanism mediated by the human Multidrug Resistant Protein 1/ABCC1

Archive ouverte | Nasr, Rachad | CCSD

International audience. The transporter Multidrug Resistance Protein 1 (MRP1, ABCC1) is implicated in multidrug resistant (MDR) phenotype of cancer cells. Glutathione (GSH) plays a key role in MRP1 transport activit...

Chargement des enrichissements...