Harnessing subcellular-resolved organ distribution of cationic copolymer-functionalized fluorescent nanodiamonds for optimal delivery of therapeutic siRNA to a xenografted tumor in mice

Archive ouverte

Claveau, Sandra | Kindermann, Marek | Papine, Alexandre | Díaz-Riascos, Zamira, V | Delen, Xavier | Georges, Patrick | López-Alemany, Roser | Tirado Martínez, Òscar | Bertrand, Jean-Rémi | Abasolo Olaortua, Ibane | Cigler, Petr | Treussart, François

Edité par CCSD ; Royal Society of Chemistry -

International audience. Diamond nanoparticles (nanodiamonds) can transport active drugs in cultured cells as well as in vivo. However, in the latter case, methods allowing to determine their bioavailability accurately are still lacking. Nanodiamond can be made fluorescent with a perfectly stable emission and a lifetime ten times longer than the one of tissue autofluorescence. Taking advantage of these properties, we present an automated quantification method of fluorescent nanodiamonds (FND) in histological sections of mouse organs and tumor, after systemic injection. We use a home-made time-delayed fluorescence microscope comprising a custom pulsed laser source synchronized on the master clock of a gated intensified array detector. This setup allows to obtain ultra-high-resolution images 120 Mpixels of whole mouse organs sections, with subcellular resolution and single-particle sensitivity. As a proof-of-principle experiment, we quantified the biodistribution and aggregation state of new cationic FNDs able to transport small interfering RNA inhibiting the oncogene responsible for Ewing sarcoma. Image analysis showed a low yield of nanodiamonds in the tumor after intravenous injection. Thus, for the in vivo efficacy assay we injected the nanomedicine into the tumor. We achieved a 28-fold inhibition of the oncogene. This method can readily be applied to other nanoemitters with ≈100 ns lifetime.

Suggestions

Du même auteur

Delivery of siRNA to Ewing Sarcoma Tumor Xenografted on Mice, Using Hydrogenated Detonation Nanodiamonds: Treatment Efficacy and Tissue Distribution

Archive ouverte | Claveau, Sandra | CCSD

International audience. Nanodiamonds of detonation origin are promising delivery agents of anti-cancer therapeutic compounds in a whole organism like mouse, owing to their versatile surface chemistry and ultra-small...

Design Rules for the Nano-Bio Interface of Nanodiamonds: Implications for siRNA Vectorization

Archive ouverte | Kindermann, Marek | CCSD

The enormous therapeutic potential of selective RNA interference has recently been manifested by the approval of several small interfering RNA (siRNA)-based drugs. However, the efficacy of siRNA delivery is still limited, and an e...

Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene

Archive ouverte | Bertrand, Jean-Rémi | CCSD

International audience. The expression of a defective gene can lead to major cell dysfunctions among which cell proliferation and tumor formation. One promising therapeutic strategy consists in silencing the defecti...

Chargement des enrichissements...