A network of transcriptional repressors modulates auxin responses.

Archive ouverte

Truskina, Jekaterina | Han, Jingyi | Chrysanthou, Elina | Galvan-Ampudia, Carlos | Lainé, Stéphanie | Brunoud, Geraldine | Macé, Julien | Bellows, Simon | Legrand, Jonathan | Bågman, Anne-Maarit | Smit, Margot | Smetana, Ondrej | Stigniani, Arnaud | Porco, Silvana | Bennett, Malcom J. | Mähönen, Ari Pekka | Parcy, Francois | Farcot, Etienne | Roudier, François | Brady, Siobhan M | Bishopp, Anthony | Vernoux, Teva

Edité par CCSD ; Nature Publishing Group -

International audience. The regulation of signalling capacity, combined with the spatiotemporal distribution of developmental signals themselves, is pivotal in setting developmental responses in both plants and animals1. The hormone auxin is a key signal for plant growth and development that acts through the AUXIN RESPONSE FACTOR (ARF) transcription factors2-4. A subset of these, the conserved class A ARFs5, are transcriptional activators of auxin-responsive target genes that are essential for regulating auxin signalling throughout the plant lifecycle2,3. Although class A ARFs have tissue-specific expression patterns, how their expression is regulated is unknown. Here we show, by investigating chromatin modifications and accessibility, that loci encoding these proteins are constitutively open for transcription. Through yeast one-hybrid screening, we identify the transcriptional regulators of the genes encoding class A ARFs from Arabidopsis thaliana and demonstrate that each gene is controlled by specific sets of transcriptional regulators. Transient transformation assays and expression analyses in mutants reveal that, in planta, the majority of these regulators repress the transcription of genes encoding class A ARFs. These observations support a scenario in which the default configuration of open chromatin enables a network of transcriptional repressors to regulate expression levels of class A ARF proteins and modulate auxin signalling output throughout development.

Suggestions

Du même auteur

Auxin-dependent post-translational regulation of MONOPTEROS in the Arabidopsis root

Archive ouverte | Cavalleri, Alex | CCSD

International audience. Auxin plays a pivotal role in plant development by activating AUXIN RESPONSE FACTORs (ARFs). Under low auxin levels, ARF activity is inhibited by interacting with Aux/IAAs. Aux/IAAs are degra...

Temporal integration of auxin information for the regulation of patterning

Archive ouverte | Galvan-Ampudia, Carlos | CCSD

International audience. Positional information is essential for coordinating the development of multicellular organisms. In plants, positional information provided by the hormone auxin regulates rhythmic organ produ...

A quantitative gibberellin signalling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem

Archive ouverte | Vernoux, Teva | CCSD

Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. He...

Chargement des enrichissements...