Self-organizing maps for clustering and visualization of bipartite graphs

Archive ouverte

Olteanu, Madalina | Villa-Vialaneix, Nathalie, N.

Edité par CCSD -

National audience. Graphs (also frequently called networks) have attracted a burst of attention in the last years, with applications to social science, biology, computer science... The present paper proposes a data mining method for visualizing and clustering the nodes of a peculiar class of graphs: bipartite graphs. The method is based on a self-organizing map algorithm and relies on an extension of this approach to data described by a dissimilarity matrix. . Les graphes (souvent appel es r eseaux) ont connu un int er^et croissant ces derni eres ann ees car on les retrouve de mani ere naturelle dans un nombre important d'applications en sciences sociales, biologie, informatique... Cet article propose une m ethode de fouille de donn ees pour visualiser et classer les sommets d'une classe particuli ere de graphes, les graphes bipartis. La m ethode propos ee est bas ee sur un algorithme de carte auto-organisatrice et s'appuie sur une extension de cette approche a des donn ees d ecrites par une matrice de dissimilarite.

Suggestions

Du même auteur

Multiple kernel self-organizing maps

Archive ouverte | Olteanu, Madalina | CCSD

International audience. In a number of real-life applications, the user is interested in analyzing several sources of information together: a graph combined with the additional information known on its nodes, numeri...

SOMbrero: an R package for numeric and non-numeric self-organizing maps

Archive ouverte | Boelaert, Julien | CCSD

International audience. This paper presents SOMbrero, a new R package for self-organizing maps. Along with the standard SOM algorithm for numeric data, it implements self-organizing maps for contingency tables ("Kor...

Classification et visualisation de graphes avec SOMbrero

Archive ouverte | Olteanu, Madalina | CCSD

National audience

Chargement des enrichissements...