Identification and characterization of the MADS-Box genes and their contribution to flower organ in carnation (Dianthus caryophyllus L.)

Archive ouverte

Zhang, Xiaoni | Wang, Qijian | Yang, Shaozong | Lin, Shengnan | Bao, Manzhu | Bendahmane, Mohammed | Wu, Quanshu | Wang, Caiyun | Fu, Xiaopeng

Edité par CCSD ; MDPI -

International audience. Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation (DcaMADS) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKCc, two MIKC*, two M alpha, and five M gamma). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE (SVP)), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 (AGL6), one SEEDSTICK (STK), one B sister, one SVP, and one Ma). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation.

Suggestions

Du même auteur

Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis

Archive ouverte | Wang, Qijian | CCSD

International audience. The double flower is a highly important breeding trait that affects the ornamental value in many flowering plants. To get a better understanding of the genetic mechanism of double flower form...

Transcriptome and morphological analyses of double flower formation in Dianthus chinensis

Archive ouverte | Zhang, Xiaoni | CCSD

International audience. The double flower developmental process is regulated via a complex transcriptional regulatory network. To understand this highly dynamic and complex developmental process of Dianthus spp., we...

Regeneration and Agrobacterium-mediated genetic transformation in Dianthus chinensis

Archive ouverte | Zhang, Xiaoni | CCSD

International audience. Dianthus chinensis is widely used as a landscaping plant in rock gardens and has high commercial value. However, few studies of this plant's regeneration and genetic transformation have been ...

Chargement des enrichissements...