Visualizing and profiling lipids in the OVLT of Fat-1 and wild type mouse brains during LPS-induced systemic inflammation using AP-SMALDI MSI

Archive ouverte

Bredehöft, Janne | Bhandari, Dhaka Ram | Pflieger, Fabian Johannes | Schulz, Sabine | Kang, Jing X. | Layé, Sophie | Roth, Joachim | Gerstberger, Rüdiger | Mayer, Konstantin | Spengler, Bernhard | Rummel, Christoph

Edité par CCSD ; American Chemical Society (ACS) -

International audience. Lipids, including omega-3 polyunsaturated fatty acids (n-3-PUFAs), modulate brain-intrinsic inflammation during systemic inflammation. The vascular organ of the lamina terminalis (OVLT) is a brain structure important for immune-to-brain communication. We, therefore, aimed to profile the distribution of several lipids (e.g., phosphatidyl-choline/ethanolamine, PC/PE), including n-3-PUFA-carrying lipids (esterified in phospholipids), in the OVLT during systemic lipopolysaccharide(LPS)-induced inflammation. We injected wild type and endogenously n-3-PUFA producing fat-1 transgenic mice with LPS (i.p., 2.5 mg/kg) or PBS. Brain samples were analyzed using immunohistochemistry and high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization orbital trapping mass spectrometry imaging (AP-SMALDI-MSI) for spatial resolution of lipids. Depending on genotype and treatment, several distinct distribution patterns were observed for lipids [e.g., lyso(L)PC (16:0)/(18:0)] proposed to be involved in inflammation. The distribution patterns ranged from being homogeneously disseminated [LPC (18:1)], absent/reduced signaling within the OVLT relative to adjacent preoptic tissue [PE (38:6)], either treatment- and genotype-dependent or independent low signal intensities [LPC (18:0)], treatment- and genotype-dependent [PC 38:6)] or independent accumulation in the OVLT [PC (38:7)], and accumulation in commissures, e.g., nerve fibers like the optic nerve [LPE (18:1)]. Overall, screening of lipid distribution patterns revealed distinct inflammation-induced changes in the OVLT, highlighting the prominent role of lipid metabolism in brain inflammation. Moreover, known and novel candidates for brain inflammation and immune-to-brain communication were detected specifically within this pivotal brain structure, a window between the periphery and the brain. The biological significance of these newly identified lipids abundant in the OVLT and the adjacent preoptic area remains to be further analyzed.

Consulter en ligne

Suggestions

Du même auteur

Fat-1 transgenic mice with elevated omega-3 fatty acids are protected from allergic airway responses

Archive ouverte | Bilal, Sueleyman | CCSD

International audience. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been implicated in the alleviation of asthma. Recent studies have demonstrated that the n-3 PUFA derived lipid mediators, protectin D1 and ...

Physical activity and fat-free mass during growth and in later life

Archive ouverte | Westerterp, Klaas | CCSD

International audience. ABSTRACT Background Physical activity may be a way to increase and maintain fat-free mass (FFM) in later life, similar to the prevention of fractures by increasing peak bone mass. Objectives ...

Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration

Archive ouverte | Chaskiel, Léa | CCSD

International audience

Chargement des enrichissements...