Where are the missing gene defects in inherited retinal disorders? Intronic and synonymous variants contribute at least to 4% of CACNA1F-mediated inherited retinal disorders

Archive ouverte

Zeitz, Christina | Michiels, Christelle | Neuillé, Marion | Friedburg, Christoph | Condroyer, Christel | Boyard, Fiona | Antonio, Aline | Bouzidi, Nassima | Milicevic, Diana | Veaux, Robin | Tourville, Aurore | Zoumba, Axelle | Seneina, Imene | Foussard, Marine | Andrieu, Camille | Preising, Markus | Blanchard, Steven | Saraiva, Jean-Paul | Mesrob, Lilia | Le Floch, Edith | Jubin, Claire | Meyer, Vincent | Blanché, Hélène | Boland, Anne | Deleuze, Jean-François | Sharon, Dror | Drumare, Isabelle | Defoort-Dhellemmes, Sabine | de Baere, Elfride | Leroy, Bart, P | Zanlonghi, Xavier | Casteels, Ingele | de Ravel, Thomy | Balikova, Irina | Koenekoop, Robert, K | Laffargue, Fanny | Mclean, Rebecca | Gottlob, Irene | Bonneau, Dominique | Schorderet, Daniel | Munier, Francis | Mckibbin, Martin | Prescott, Katrina | Pelletier, Valérie | Dollfus, Hélène | Perdomo-Trujillo, Yaumara | Faure, Céline | Reiff, Charlotte | Wissinger, Bernd | Meunier, Isabelle | Kohl, Susanne | Banin, Eyal | Zrenner, Eberhart | Jurklies, Bernhard | Lorenz, Birgit | Sahel, José-Alain | Audo, Isabelle

Edité par CCSD ; Wiley -

International audience. Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.

Consulter en ligne

Suggestions

Du même auteur

Whole-Exome Sequencing Identifies Mutations in GPR179 Leading to Autosomal-Recessive Complete Congenital Stationary Night Blindness

Archive ouverte | Audo, Isabelle | CCSD

International audience

TRPM1 Is Mutated in Patients with Autosomal-Recessive Complete Congenital Stationary Night Blindness

Archive ouverte | Audo, Isabelle | CCSD

International audience. Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of th...

Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy

Archive ouverte | Zeitz, Christina | CCSD

International audience. The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal...

Chargement des enrichissements...