Secondary metabolites have more influence than morphophysiological traits on litter decomposability across genotypes of Arabidopsis thaliana

Archive ouverte

Kazakou, Elena | Vasseur, François | Sartori, Kevin | Baron, Etienne | Rowe, Nick P | Vile, Denis

Edité par CCSD ; Wiley -

International audience. Although interspecific variation in plant phenotype is recognised to impact afterlife processes such as litter decomposability, it is still unclear which traits and selection pressures explain these relationships. Examining intraspecific variation is crucial to identify and compare trait effects on decomposability, and investigate the potential role of natural selection. We studied the genetic variability and relationships between decomposability, plant traits typically related to decomposability at species level (morphophysiological traits), and leaf metabolites among a set of genotypes of Arabidopsis thaliana grown under controlled conditions. We also investigated correlations between decomposability and environmental variables at genotypes collection site. We investigated the genetic architecture of decomposability with genome-wide association studies (GWAS). There was large genetic variability in decomposability that was correlated with precipitation. Morphophysiological traits had a minor effect, while secondary metabolites, especially glucosinolates, were correlated with decomposability. Consistently, GWAS suggested that genes and metabolites related to the composition of cell membranes and envelopes control the variation of decomposability across genotypes. Our study suggests that decomposability varies within species as a result of metabolic adaptation to climate. Our findings highlight that subtle variations of defence-related metabolites like glucosinolates may strongly influence after-life processes such as decomposability.

Suggestions

Du même auteur

A perspective on plant phenomics: coupling deep learning and near-infrared spectroscopy

Archive ouverte | Vasseur, François | CCSD

International audience. The trait-based approach in plant ecology aims at understanding and classifying the diversity of ecological strategies by comparing plant morphology and physiology across organisms. The major...

Climate as a driver of adaptive variations in ecological strategies in Arabidopsis thaliana

Archive ouverte | Vasseur, François | CCSD

International audience. ackground and aimsThe CSR classification categorizes plants as stress tolerators (S), ruderals (R) and competitors (C). Initially proposed as a general framework to describe ecological strate...

Do leaf nitrogen resorption dynamics align with the slow‐fast continuum? A test at the intraspecific level

Archive ouverte | Sartori, Kevin | CCSD

International audience. The links between internal nitrogen recycling through the process of resorption from senescing leaves, whole-plant resource-use strategies and performance remain elusive. Indeed, tests of suc...

Chargement des enrichissements...