A road map for prioritizing warheads for cysteine targeting covalent inhibitors

Archive ouverte

Abranyi-Balogh, Peter | Petri, Laszlo | Imre, Timea | Szijj, Peter | Scarpino, Andrea | Hrast, Martina | Mitrovic, Ana | Fonovic, Ursa Petar | Nemeth, Krisztina | Barreteau, Helene | Roper, David I. | Horvati, Kata | Ferenczy, Gyorgy G. | Kos, Janko | Ilas, Janez | Gobec, Stanislav | Keseru, Gyorgy M.

Edité par CCSD ; Elsevier -

WOS:000450383500008. International audience. Targeted covalent inhibitors have become an integral part of a number of therapeutic protocols and are the subject of intense research. The mechanism of action of these compounds involves the formation of a covalent bond with protein nucleophiles, mostly cysteines. Given the abundance of cysteines in the proteome, the specificity of the covalent inhibitors is of utmost importance and requires careful optimization of the applied warheads. In most of the cysteine targeting covalent inhibitor programs the design strategy involves incorporating Michael acceptors into a ligand that is already known to bind non-covalently. In contrast, we suggest that the reactive warhead itself should be tailored to the reactivity of the specific cysteine being targeted, and we describe a strategy to achieve this goal. Here, we have extended and systematically explored the available organic chemistry toolbox and characterized a large number of warheads representing different chemistries. We demonstrate that in addition to the common Michael addition, there are other nucleophilic addition, addition-elimination, nucleophilic substitution and oxidation reactions suitable for specific covalent protein modification. Importantly, we reveal that warheads for these chemistries impact the reactivity and specificity of covalent fragments at both protein and proteome levels. By integrating surrogate reactivity and selectivity models and subsequent protein assays, we define a road map to help enable new or largely unexplored covalent chemistries for the optimization of cysteine targeting inhibitors. (C) 2018 Elsevier Masson SAS. All rights reserved.

Consulter en ligne

Suggestions

Du même auteur

In silico identification, synthesis and biological evaluation of novel tetrazole inhibitors of MurB

Archive ouverte | Hrast, Martina | CCSD

International audience

H Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases

Archive ouverte | Hrasta, Martina | CCSD

International audience. The Mur ligases form a series of consecutive enzymes that participate in the intracellular steps of bacterial peptidoglycan biosynthesis. They therefore represent interesting targets for anti...

Structure-activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF.

Archive ouverte | Hrast, Martina | CCSD

International audience. Peptidoglycan is an essential component of the bacterial cell wall, and enzymes involved in its biosynthesis represent validated targets for antibacterial drug discovery. MurF catalyzes the f...

Chargement des enrichissements...