Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination

Archive ouverte

Baek, Chooyoung | Freem, Lucy | Goïame, Rosette | Sang, Helen | Morin, Xavier | Tozer, Samuel

Edité par CCSD ; Public Library of Science -

International audience. The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.

Suggestions

Du même auteur

Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination

Archive ouverte | Baek, Chooyoung | CCSD

International audience

Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination

Archive ouverte | Baek, Chooyoung | CCSD

International audience. The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they ...

CRISPR/Cas9-based somatic knock-in of reporters in the avian embryo in ovo

Archive ouverte | Vargas, Alciades Petit | CCSD

Gene editing and protein tagging are at the heart of modern developmental and cell biology. The advent of CRISPR/Cas9 based methods offers the possibility to develop customized approaches for genomic manipulations in non-classical...

Chargement des enrichissements...