Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: From feasibility to single-trial analysis

Archive ouverte

Dubarry, Anne-Sophie | Badier, Jean | Trébuchon-da Fonseca, Agnès | Gavaret, Martine | Carron, Romain | Bartolomei, Fabrice | Chauvel, Catherine | Régis, Jean | Chauvel, Patrick | Alario, F.-Xavier | Bénar, Christian-G | Trebuchon-da Fonseca, Agnès | Bénar, Christian -G.

Edité par CCSD ; Elsevier -

International audience. Electroencephalography (EEG), magnetoencephalography (MEG), and intracerebral stereotaxic EEG (SEEG) are the three neurophysiological recording techniques, which are thought to capture the same type of brain activity. Still, the relationships between non-invasive (EEG, MEG) and invasive (SEEG) signals remain to be further investigated. In early attempts at comparing SEEG with either EEG or MEG, the recordings were performed separately for each modality. However such an approach presents substantial limitations in terms of signal analysis. The goal of this technical note is to investigate the feasibility of simultaneously recording these three signal modalities (EEG, MEG and SEEG), and to provide strategies for analyzing this new kind of data. Intracerebral electrodes were implanted in a patient with intractable epilepsy for presurgical evaluation purposes. This patient was presented with a visual stimulation paradigm while the three types of signals were simultaneously recorded. The analysis started with a characterization of the MEG artifact caused by the SEEG equipment. Next, the average evoked activities were computed at the sensor level, and cortical source activations were estimated for both the EEG and MEG recordings; these were shown to be compatible with the spatiotemporal dynamics of the SEEG signals. In the average time–frequency domain, concordant patterns between the MEG/EEG and SEEG recordings were found below the 40 Hz level. Finally, a fine-grained coupling between the amplitudes of the three recording modalities was detected in the time domain, at the level of single evoked responses. Importantly, these correlations have shown a high level of spatial and temporal specificity. These findings provide a case for the ability of trimodal recordings (EEG, MEG, and SEEG) to reach a greater level of specificity in the investigation of brain signals and functions.

Consulter en ligne

Suggestions

Du même auteur

Simultaneous SEEG-MEG-EEG recordings Overcome the SEEG limited spatial sampling

Archive ouverte | Gavaret, Martine | CCSD

International audience. During presurgical evaluation of pharmacoresistant partial epilepsies, stereoelectroencephalography (SEEG) records interictal and ictal activities directly but is inherently limited in spatia...

Exploring post-rehabilitation plasticity with intra-cerebral recordings on anomic profiles

Archive ouverte | Trébuchon, Agnès | CCSD

International audience. Background: Patients with drug-resistant epilepsy involving the language network often exhibit anomic profiles in daily life due to difficulties with lexical selection processes. Very little ...

What Are the Promises and Challenges of Simultaneous MEG and Intracranial Recordings?

Archive ouverte | Dubarry, Anne-Sophie | CCSD

International audience. Intracranial electroencephalography (iEEG) invasively measures brain activity from neurosurgical patients with higher fidelity and spatial precision than noninvasive electroencephalography (E...

Chargement des enrichissements...