Genome-wide association studies of immune, disease and production traits in indigenous chicken ecotypes

Archive ouverte

Psifidi, Androniki | Banos, Georgios | Matika, Oswald | Desta, Takele T. | Bettridge, Judy | Hume, David A. | Dessie, Tadelle | Christley, Rob | Wigley, Paul | Hanotte, Olivier | Kaiser, Pete

Edité par CCSD ; BioMed Central -

International audience. AbstractBackgroundThe majority of chickens in sub-Saharan Africa are indigenous ecotypes, well adapted to the local environment and raised in scavenging production systems. Although they are generally resilient to disease challenge, routine vaccination and biosecurity measures are rarely applied and infectious diseases remain a major cause of mortality and reduced productivity. Management and genetic improvement programmes are hampered by lack of routine data recording. Selective breeding based on genomic technologies may provide the means to enhance sustainability. In this study, we investigated the genetic architecture of antibody response to four major infectious diseases [infectious bursal disease (IBDV), Marek’s disease (MDV), fowl typhoid (SG), fowl cholera (PM)] and resistance to Eimeria and cestode parasitism, along with two production traits [body weight and body condition score (BCS)] in two distinct indigenous Ethiopian chicken ecotypes. We conducted variance component analyses, genome-wide association studies, and pathway and selective sweep analyses.ResultsThe large majority of birds was found to have antibody titres for all pathogens and were infected with both parasites, suggesting almost universal exposure. We derived significant moderate to high heritabilities for IBDV, MDV and PM antibody titres, cestodes infestation, body weight and BCS. We identified single nucleotide polymorphisms (SNPs) with genome-wide significance for each trait. Based on these associations, we identified for each trait, pathways, networks and functional gene clusters that include plausible candidate genes. Selective sweep analyses revealed a locus on chromosome 18 associated with viral antibody titres and resistance to Eimeria parasitism that is within a positive selection signal. We found no significant genetic correlations between production, immune and disease traits, implying that selection for altered antibody response and/or disease resistance will not affect production.ConclusionsWe confirmed the presence of genetic variability and identified SNPs significantly associated with immune, disease and production traits in indigenous village chickens. Results underpin the feasibility of concomitant genetic improvement for enhanced antibody response, resistance to parasitism and productivity within and across indigenous chicken ecotypes.

Suggestions

Du même auteur

Phenotypic and genetic variation in the response of chickens to Eimeria tenella induced coccidiosis

Archive ouverte | Boulton, Kay | CCSD

International audience. AbstractBackgroundCoccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high ...

Single-step genome-wide association analyses of claw horn lesions in Holstein cattle using linear and threshold models

Archive ouverte | Li, Bingjie | CCSD

International audience. AbstractBackgroundLameness in dairy cattle is primarily caused by foot lesions including the claw horn lesions (CHL) of sole haemorrhage (SH), sole ulcers (SU), and white line disease (WL). T...

Genetic characterisation of the Connemara pony and the Warmblood horse using a within-breed clustering approach

Archive ouverte | Lindsay-Mcgee, Victoria | CCSD

International audience. AbstractBackgroundThe Connemara pony (CP) is an Irish breed that has experienced varied selection by breeders over the last fifty years, with objectives ranging from the traditional hardy pon...

Chargement des enrichissements...