The Woody-Preferential Gene EgMYB88 Regulates the Biosynthesis of Phenylpropanoid-Derived Compounds in Wood

Archive ouverte

Soler, Marçal | Plasencia, Anna | Lepikson-Neto, Jorge | Camargo, Eduardo Leal O. | Dupas, Annabelle | Ladouce, Nathalie | Pesquet, Edouard | Mounet, Fabien, F. | Larbat, Romain | Grima Pettenati, Jacqueline

Edité par CCSD ; Frontiers -

International audience. Comparative phylogenetic analyses of the R2R3-MYB transcription factor family revealed that five subgroups were preferentially found in woody species and were totally absent from Brassicaceae and monocots (Soler et al., 2015). Here, we analyzed one of these subgroups (WPS-I) for which no gene had been yet characterized. Most Eucalyptus members of WPS-I are preferentially expressed in the vascular cambium, the secondary meristem responsible for tree radial growth. We focused on EgMYB88, which is the most specifically and highly expressed in vascular tissues, and showed that it behaves as a transcriptional activator in yeast. Then, we functionally characterized EgMYB88 in both transgenic Arabidopsis and poplar plants overexpressing either the native or the dominant repression form (fused to the Ethylene-responsive element binding factor-associated Amphiphilic Repression motif, EAR). The transgenic Arabidopsis lines had no phenotype whereas the poplar lines overexpressing EgMYB88 exhibited a substantial increase in the levels of the flavonoid catechin and of some salicinoid phenolic glycosides (salicortin, salireposide, and tremulacin), in agreement with the increase of the transcript levels of landmark biosynthetic genes. A change in the lignin structure (increase in the syringyl vs. guaiacyl, S/G ratio) was also observed. Poplar lines overexpressing the EgMYB88 dominant repression form did not show a strict opposite phenotype. The level of catechin was reduced, but the levels of the salicinoid phenolic glycosides and the S/G ratio remained unchanged. In addition, they showed a reduction in soluble oligolignols containing sinapyl p-hydroxybenzoate accompanied by a mild reduction of the insoluble lignin content. Altogether, these results suggest that EgMYB88, and more largely members of the WPS-I group, could control in cambium and in the first layers of differentiating xylem the biosynthesis of some phenylpropanoid-derived secondary metabolites including lignin.

Suggestions

Du même auteur

What MYB genes tell us about the specificities of woody plants?

Archive ouverte | Soler, Marçal | CCSD

International audience

Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation.

Archive ouverte | Plasencia, Anna | CCSD

article in press. International audience. Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus gr...

The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation

Archive ouverte | Soler, Marçal | CCSD

International audience. Wood, also called secondary xylem, is a specialized vascular tissue constituted by different cell types that undergo a differentiation process involving deposition of thick, lignified seconda...

Chargement des enrichissements...