Hydrolytic Fate of 3/15-Acetyldeoxynivalenol in Humans: Specific Deacetylation by the Small Intestine and Liver Revealed Using in Vitro and ex Vivo Approaches

Archive ouverte

Ajandouz, El Hassan | Berdah, Stephane | Moutardier, Vincent | Bege, Thierry | Birnbaum, David Jérémie | Perrier, Josette | Di Pasquale, Eric | Maresca, Marc

Edité par CCSD ; MDPI -

International audience. In addition to deoxynivalenol (DON), acetylated derivatives, i.e., 3-acetyl and 15-acetyldexynivalenol (or 3/15ADON), are present in cereals leading to exposure to these mycotoxins. Animal and human studies suggest that 3/15ADON are converted into DON after their ingestion through hydrolysis of the acetyl moiety, the site(s) of such deacetylation being still uncharacterized. We used in vitro and ex vivo approaches to study the deacetylation of 3/15ADON by enzymes and cells/tissues present on their way from the food matrix to the blood in humans. We found that luminal deacetylation by digestive enzymes and bacteria is limited. Using human cells, tissues and S9 fractions, we were able to demonstrate that small intestine and liver possess strong deacetylation capacity compared to colon and kidneys. Interestingly, in most cases, deacetylation was more efficient for 3ADON than 15ADON. Although we initially thought that carboxylesterases (CES) could be responsible for the deacetylation of 3/15ADON, the use of pure human CES1/2 and of CES inhibitor demonstrated that CES are not involved. Taken together, our original model system allowed us to identify the small intestine and the liver as the main site of deacetylation of ingested 3/15ADON in humans.

Suggestions

Du même auteur

Overview and Comparison of Intestinal Organotypic Models, Intestinal Cells, and Intestinal Explants Used for Toxicity Studies

Archive ouverte | Maresca, Marc | CCSD

International audience. The intestine is a complex organ formed of different types of cell distributed in different layers of tissue. To minimize animal experiments, for decades, researchers have been trying to deve...

Deoxynivalenol inhibits the expression of trefoil factors (TFF) by intestinal human and porcine goblet cells

Archive ouverte | Graziani, Fabien | CCSD

International audience. Trefoil factors (TFFs) are bioactive peptides expressed by several epithelia, including the intestine, where they regulate key functions such as tissue regeneration, barrier function and infl...

Cunninghamella blakesleeana -mediated biotransformation of a contraceptive drug, desogestrel, and anti-MDR- Staphylococcus aureus activity of its metabolites

Archive ouverte | -Tul-Wahab, Atia | CCSD

International audience. Staphylococcus aureus is one of the most infectious agents among staphylococcal bacteria. Currently many strains of S. aureus have developed resistance against available antibiotics. Therefor...

Chargement des enrichissements...