A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells

Archive ouverte

Sakakini, Nathalie | Turchi, Laurent | Bergon, Aurélie | Holota, Hélène | Rekima, Samah | Lopez, Fabrice | Paquis, Philipe | Almairac, Fabien | Fontaine, Denys | Baeza-Kallee, Nathalie | van Obberghen-Schilling, Ellen | Junier, Marie-Pierre | Chneiweiss, Hervé | Figarella-Branger, Dominique | Burel-Vandenbos, Fanny | Imbert, Jean | Virolle, Thierry

Edité par CCSD ; American Society for Biochemistry and Molecular Biology -

International audience. Glioblastomas are the most common primary brain tumors, highly vascularized, infiltrating, and resistant to current therapies. This cancer leads to a fatal outcome in less than 18 months. The aggressive behavior of glioblastomas, including resistance to current treatments and tumor recurrence, has been attributed to glioma stemlike/progenitor cells. The transcription factor EGR1 (early growth response 1), a member of a zinc finger transcription factor family, has been described as tumor suppressor in gliomas when ectopically overexpressed. Although EGR1 expression in human glioblastomas has been associated with patient survival, its precise location in tumor territories as well as its contribution to glioblastoma progression remain elusive. In the present study, we show that EGR1-expressing cells are more frequent in high grade gliomas where the nuclear expression of EGR1 is restricted to proliferating/progenitor cells. We show in primary cultures of glioma stemlike cells that EGR1 contributes to stemness marker expression and proliferation by orchestrating a PDGFA-dependent growth-stimulatory loop. In addition, we demonstrate that EGR1 acts as a positive regulator of several important genes, including SHH, GLI1, GLI2, and PDGFA, previously linked to the maintenance and proliferation of glioma stemlike cells.

Suggestions

Du même auteur

ERK-mediated loss of miR-199a-3p and induction of EGR1 act as a "toggle switch" of GBM cell dedifferentiation into NANOG- and OCT4-positive cells

Archive ouverte | Almairac, Fabien | CCSD

International audience. There is great interest in understanding how the cancer stem cell population may be maintained in solid tumors. Here we show that tumor cells exhibiting stem-like properties and expression of...

CELF2 Sustains a Proliferating/OLIG2+ Glioblastoma Cell Phenotype via the Epigenetic Repression of SOX3

Archive ouverte | Turchi, Laurent | CCSD

International audience. Glioblastomas (GBs) are incurable brain tumors. The persistence of aggressive stem-like tumor cells after cytotoxic treatments compromises therapeutic efficacy, leading to GBM recurrence. For...

Tumorigenic Potential of miR-18A* in Glioma Initiating Cells Requires NOTCH-1 Signaling.

Archive ouverte | Turchi, Laurent | CCSD

International audience. Stem cell-like properties of Glioma initiating Cells (GiCs) fuel glioblastoma (GBM) development by providing the different cell types that comprise the tumor. It is therefore likely that the ...

Chargement des enrichissements...