Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis.

Archive ouverte

Sieberts, S | Zhu, Fan | García-García, Javier | Stahl, Eli | Pratap, Abhishek | Pandey, Gaurav | Pappas, Dimitrios | Aguilar, Daniel | Anton, Bernat | Bonet, Bo | Eksi, Ridvan | Fornés, Oriol | Guney, Emre | Li, Hongdong | Marín, Manuel | Panwar, Bharat | Planas-Iglesias, Joan | Poglayen, Daniel | Cui, Jing | Falcao, Andre O. | Suver, Christine | Hoff, Bruce | Balagurusamy, S | Dillenberger, Donna | Neto, Elias Chaibub | Norman, Thea | Aittokallio, Tero | Ammad-Ud-Din, Muhammad | Azencott, Chloe-Agathe | Bellón, Víctor | Boeva, Valentina | Bunte, Kerstin | Chheda, Himanshu | Cheng, Cheng | Corander, Jukka | Dumontier, Michel | Goldenberg, Anna | Gopalacharyulu, Peddinti | Hajiloo, Mohsen | Hidru, Daniel | Jaiswal, Alok | Kaski, S | Khalfaoui, Beyrem | Khan, Ali | Kramer, Eric R. | Marttinen, Pekka | Mezlini, Aziz M. | Molparia, Bhuvan | Pirinen, Matti | Saarela, Janna | Samwald, Matthias | Stoven, Véronique | Tang, Hao | Tang, Jing | Torkamani, Ali | Vert, Jean-Philippe | Wang, Bo | Wang, Tao | Wennerberg, Krister | Wineinger, Nathan E. | Guan, Guanghua | Xie, Yang | Yeung, Rae | Zhan, Xiaowei | Zhao, Cheng | Calaza, Manuel | Elmarakeby, Haitham | Heath, S. | Long, Quan | Moore, Jonathan D. | Opiyo, Stephen | Savage, S. | Zhu, Jun | Greenberg, Jeff | Kremer, Joel | Michaud, Kaleb | Barton, Anne | Coenen, Marieke | Mariette, Xavier | Miceli, Corinne | Shadick, Nancy | Weinblatt, Michael | de Vries, Niek | Tak, Paul P. | Gerlag, Danielle | Huizinga, Tom W J | Kurreeman, Fina | Allaart, Cornelia F. | Bridges, S | Bridges, S Louis | Criswell, Lindsey | Moreland, Larry | Klareskog, Lars | Saevarsdottir, Saedis | Padyukov, Leonid | Gregersen, Peter K | Friend, Stephen | Plenge, Robert | Stolovitzky, Gustavo | Oliva, Baldo | Guan, Yuanfang | Mangravite, Lara M

Edité par CCSD ; Nature Publishing Group -

International audience. Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2)=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.

Suggestions

Du même auteur

The inconvenience of data of convenience: computational research beyond post-mortem analyses

Archive ouverte | Azencott, Chloé-Agathe | CCSD

International audience

A community effort to assess and improve drug sensitivity prediction algorithms

Archive ouverte | Costello, James C | CCSD

International audience

Integration of sequence data from a consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene

Archive ouverte | Okada, Yukinori | CCSD

International audience. Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequ...

Chargement des enrichissements...