Bayesian Estimation in Functional-Structural Plant Models with Stochastic Organogenesis

Archive ouverte

Loi, Cédric | Cournède, Paul-Henry | Trevezas, Samis

Edité par CCSD -

International audience. In this article, Functional Structural Plant growth Models (FSPMs) with stochastic organogenesis are described in the framework of Jump Markov Models. A Bayesian approach is adopted to estimate uncertain ecophysiological parameters. In particular, two estimation procedures are detailed: the Rao-Blackwellized Particle Filter and the Convolution Particle Filter. These methods are then applied and compared throughout a particular FSPM: the GreenLab model with stochastic organogenesis.

Suggestions

Du même auteur

Filtrage par noyaux de convolution itératif

Archive ouverte | Chen, Yuting | CCSD

International audience. L'estimation paramétrique des modèles dynamiques en biologie est souvent rendue complexe par les fortes interactions entre processus et les non-linéarités qui en découlent, ainsi que par la d...

Computing the moments of probability distributions for branching processes

Archive ouverte | Loi, Cédric | CCSD

This document is a comparative study of four methods (Markov chains, compound processes, substructure factorization and generating functions) to compute the moments of probability distributions associated to homogeneous branching ...

A Markovian framework to formalize stochastic L-systems and application to models of plant development

Archive ouverte | Loi, Cédric | CCSD

This document is an extension of the article written by \textit{Loi and Cournède} (DMTCS, 2008). This article shows the relationship between stochastic L-Systems and a simplified GreenLab growth model with only branching and diffe...

Chargement des enrichissements...