Peculiar inhibition of human mitochondrial aspartyl-tRNA synthetase by adenylate analogs.

Archive ouverte

Messmer, Marie | Blais, Sébastien P | Balg, Christian | Chênevert, Robert | Grenier, Luc | Lagüe, Patrick | Sauter, Claude | Sissler, Marie | Giegé, Richard | Lapointe, Jacques | Florentz, Catherine

Edité par CCSD ; Elsevier -

International audience. Human mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), the enzymes which esterify tRNAs with the cognate specific amino acid, form mainly a different set of proteins than those involved in the cytosolic translation machinery. Many of the mt-aaRSs are of bacterial-type in regard of sequence and modular structural organization. However, the few enzymes investigated so far do have peculiar biochemical and enzymological properties such as decreased solubility, decreased specific activity and enlarged spectra of substrate tRNAs (of same specificity but from various organisms and kingdoms), as compared to bacterial aaRSs. Here the sensitivity of human mitochondrial aspartyl-tRNA synthetase (AspRS) to small substrate analogs (non-hydrolysable adenylates) known as inhibitors of Escherichia coli and Pseudomonas aeruginosa AspRSs is evaluated and compared to the sensitivity of eukaryal cytosolic human and bovine AspRSs. L-aspartol-adenylate (aspartol-AMP) is a competitive inhibitor of aspartylation by mitochondrial as well as cytosolic mammalian AspRSs, with K(i) values in the micromolar range (4-27 microM for human mt- and mammalian cyt-AspRSs). 5'-O-[N-(L-aspartyl)sulfamoyl]adenosine (Asp-AMS) is a 500-fold stronger competitive inhibitor of the mitochondrial enzyme than aspartol-AMP (10nM) and a 35-fold lower competitor of human and bovine cyt-AspRSs (300 nM). The higher sensitivity of human mt-AspRS for both inhibitors as compared to either bacterial or mammalian cytosolic enzymes, is not correlated with clear-cut structural features in the catalytic site as deduced from docking experiments, but may result from dynamic events. In the scope of new antibacterial strategies directed against aaRSs, possible side effects of such drugs on the mitochondrial human aaRSs should thus be considered.

Consulter en ligne

Suggestions

Du même auteur

Loss of a Primordial Identity Element for a Mammalian Mitochondrial Aminoacylation System

Archive ouverte | Fender, Aurélie | CCSD

International audience

Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny.

Archive ouverte | Messmer, Marie | CCSD

International audience. Primary and secondary structures of mammalian mitochondrial (mt) tRNAs are divergent from canonical tRNA structures due to highly skewed nucleotide content and large size variability of D- an...

A human pathology-related mutation prevents import of an aminoacyl-tRNA synthetase into mitochondria.

Archive ouverte | Messmer, Marie | CCSD

International audience. Mutations in the nuclear gene coding for the mitochondrial aspartyl-tRNA synthetase, a key enzyme for mitochondrial translation, are correlated with leukoencephalopathy. A Ser45 to Gly45 muta...

Chargement des enrichissements...