Convergence properties of the expected improvement algorithm with fixed mean and covariance functions

Archive ouverte

Vazquez, Emmanuel | Bect, Julien

Edité par CCSD ; Elsevier -

International audience. This paper deals with the convergence of the expected improvement algorithm, a popular global optimization algorithm based on a Gaussian process model of the function to be optimized. The first result is that under some mild hypotheses on the covariance function k of the Gaussian process, the expected improvement algorithm produces a dense sequence of evaluation points in the search domain, when the function to be optimized is in the reproducing kernel Hilbert space generated by k. The second result states that the density property also holds for P-almost all continuous functions, where P is the (prior) probability distribution induced by the Gaussian process.

Suggestions

Du même auteur

Assessing fire safety using complex numerical models with a Bayesian multi-fidelity approach

Archive ouverte | Stroh, Rémi | CCSD

International audience. Nowadays, fire safety engineers are increasingly relying on sophisticated numerical simulators, typically based on Computational Fluid Dynamics (CFD) solvers, to conduct their analyses. Howev...

Bayesian multi-objective optimization for quantitative risk assessment in microbiology

Archive ouverte | Basak, Subhasish | CCSD

International audience. As a part of the European project ArtiSaneFood, the primary goal of this collaborative work between ANSES, CNIEL and L2S is to establish efficient bio-intervention strategies for cheese produ...

Planification d’expériences numériques en multi-fidélité, appliquée à la sécurité en ingénierie incendie

Archive ouverte | Stroh, Rémi | CCSD

International audience. Les travaux présentés portent sur l’étude de modèles numériques multifidèles, déterministes ou stochastiques. Plus précisément, les modèles considérés disposent d’un paramètre réglant la qual...

Chargement des enrichissements...