Convergent evolution and horizontal gene transfer in Arctic Ocean microalgae

Archive ouverte

Dorrell, Richard | Kuo, Alan | Füssy, Zoltan | Richardson, Elisabeth | Salamov, Asaf | Zarevski, Nikola | Freyria, Nastasia | Ibarbalz, Federico | Jenkins, Jerry | Pierella Karlusich, Juan Jose | Stecca Steindorff, Andrei | Edgar, Robyn | Handley, Lori | Lail, Kathleen | Lipzen, Anna | Lombard, Vincent | Mcfarlane, John | Nef, Charlotte | Novák Vanclová, Anna Mg | Peng, Yi | Plott, Chris | Potvin, Marianne | Vieira, Fabio Rocha Jimenez | Barry, Kerrie | de Vargas, Colomban | Henrissat, Bernard | Pelletier, Eric | Schmutz, Jeremy | Wincker, Patrick | Dacks, Joel | Bowler, Chris | Grigoriev, Igor | Lovejoy, Connie

Edité par CCSD ; Life Science Alliance LLC -

International audience. Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.

Consulter en ligne

Suggestions

Du même auteur

Convergent evolution and horizontal gene transfer in Arctic Ocean microalgae

Archive ouverte | Dorrell, Richard | CCSD

International audience. Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to ...

The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes

Archive ouverte | Floudas, Dimitrios | CCSD

Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contai...

Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts

Archive ouverte | Druzhinina, Irina | CCSD

International audience. Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shif...

Chargement des enrichissements...