Genome-wide mapping of individual replication fork velocities using nanopore sequencing

Archive ouverte

Theulot, Bertrand | Lacroix, Laurent | Arbona, Jean-Michel | Millot, Gael, A | Jean, Etienne | Cruaud, Corinne | Pellet, Jade | Proux, Florence | Hennion, Magali | Engelen, Stefan | Lemainque, Arnaud | Audit, Benjamin | Hyrien, Olivier | Le Tallec, Benoît

Edité par CCSD ; Nature Publishing Group -

International audience. Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the velocity of individual forks detected as tracks of the thymidine analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine incorporation and wild-type growth, and precisely quantifies speed changes in cells with altered replisome progression or exposed to hydroxyurea. The positioning of >125,000 fork velocities provides a genome-wide map of fork progression based on individual fork rates, showing a uniform fork speed across yeast chromosomes except for a marked slowdown at known pausing sites.

Suggestions

Du même auteur

Genome-wide mapping of individual replication fork velocities using nanopore sequencing

Archive ouverte | Theulot, Bertrand | CCSD

International audience. Abstract Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suff...

FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing

Archive ouverte | Hennion, Magali | CCSD

International audience. Genome replication mapping methods profile cell populations, masking cell-to-cell heterogeneity. Here, we describe FORK-seq, a nanopore sequencing method to map replication of single DNA mole...

FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing

Archive ouverte | Hennion, Magali | CCSD

International audience

Chargement des enrichissements...