Effects of acute administration of donepezil or memantine on sleep-deprivation-induced spatial memory deficit in young and aged non-human primate grey mouse lemurs (Microcebus murinus)

Archive ouverte

Rahman, Anisur | Lamberty, Yves | Schenker, Esther | Cella, Massimo | Languille, Solène | Bordet, Régis | Richardson, Jill | Pifferi, Fabien | Aujard, Fabienne

Edité par CCSD ; Public Library of Science -

International audience. The development of novel therapeutics to prevent cognitive decline of Alzheimer's disease (AD) is facing paramount difficulties since the translational efficacy of rodent models did not resulted in better clinical results. Currently approved treatments, including the acetylcholinesterase inhibitor donepezil (DON) and the N-methyl-D-aspartate antagonist memantine (MEM) provide marginal therapeutic benefits to AD patients. There is an urgent need to develop a predictive animal model that is phylogenetically proximal to humans to achieve better translation. The non-human primate grey mouse lemur (Microcebus murinus) is increasingly used in aging research, but there is no published results related to the impact of known pharmacological treatments on age-related cognitive impairment observed in this primate. In the present study we investigated the effects of DON and MEM on sleep-deprivation (SD)-induced memory impairment in young and aged male mouse lemurs. In particular, spatial memory impairment was evaluated using a circular platform task after 8 h of total SD. Acute single doses of DON or MEM (0.1 and 1mg/kg) or vehicle were administered intraperitoneally 3 h before the cognitive task during the SD procedure. Results indicated that both doses of DON were able to prevent the SD-induced deficits in retrieval of spatial memory as compared to vehicle-treated animals, both in young and aged animals Likewise, MEM show a similar profile at 1 mg/kg but not at 0.1mg/kg. Taken together, these results indicate that two widely used drugs for mitigating cognitive deficits in AD were partially effective in sleep deprived mouse lemurs, which further support the translational potential of this animal model. Our findings demonstrate the utility of this primate model for further testing cognitive enhancing drugs in development for AD or other neuropsychiatric conditions.

Suggestions

Du même auteur

Sleep Deprivation Impairs Spatial Retrieval but Not Spatial Learning in the Non-Human Primate Grey Mouse Lemur

Archive ouverte | Rahman, Anisur | CCSD

International audience. A bulk of studies in rodents and humans suggest that sleep facilitates different phases of learning and memory process, while sleep deprivation (SD) impairs these processes. Here we tested th...

Effects of Dietary Resveratrol on the Sleep-Wake Cycle in the Non-Human Primate Gray Mouse Lemur ( Microcebus murinus )

Archive ouverte | Pifferi, Fabien | CCSD

International audience. Converging evidence shows that the non-human primate gray mouse lemur (Microcebus murinus) is ideal for the study of the aging process and for testing the effects of new therapies and dietary...

On-Going Frontal Alpha Rhythms Are Dominant in Passive State and Desynchronize in Active State in Adult Gray Mouse Lemurs

Archive ouverte | Infarinato, Francesco | CCSD

International audience

Chargement des enrichissements...