Combined genomic evaluation of Merino and Dohne Merino Australian sheep populations

Archive ouverte

Wicki, Marine | Brown, Daniel J. | Gurman, Phillip M. | Raoul, Jérôme | Legarra, Andrés | Swan, Andrew A.

Edité par CCSD ; BioMed Central -

International audience. AbstractBackgroundThe Dohne Merino sheep was introduced to Australia from South Africa in the 1990s. It was primarily used in crosses with the Merino breed sheep to improve on attributes such as reproduction and carcass composition. Since then, this breed has continued to expand in Australia but the number of genotyped and phenotyped purebred individuals remains low, calling into question the accuracy of genomic selection. The Australian Merino, on the other hand, has a substantial reference population in a separate genomic evaluation (MERINOSELECT). Combining these resources could fast track the impact of genomic selection on the smaller breed, but the efficacy of this needs to be investigated. This study was based on a dataset of 53,663 genotypes and more than 2 million phenotypes. Its main objectives were (1) to characterize the genetic structure of Merino and Dohne Merino breeds, (2) to investigate the utility of combining their evaluations in terms of quality of predictions, and (3) to compare several methods of genetic grouping. We used the ‘LR-method’ (Linear Regression) for these assessments.ResultsWe found very low Fst values (below 0.048) between the different Merino lines and Dohne breed considered in our study, indicating very low genetic differentiation. Principal component analysis revealed three distinct groups, identified as purebred Merino, purebred Dohne, and crossbred animals. Considering the whole population in the reference led to the best quality of predictions and the largest increase in accuracy (from ‘LR-method’) from pedigree to genomic-based evaluations: 0.18, 0.14 and 0.16 for yearling fibre diameter (YFD), yearling greasy fleece weight (YGFW) and yearling liveweight (YWT), respectively. Combined genomic evaluations showed higher accuracies than the evaluation based on the Dohne reference only (accuracies increased by 0.16, 0.06 and 0.07 for YFD, YGFW, and YWT, respectively). For the combined genomic evaluations, metafounder models were more accurate than Unknown Parent Groups models (accuracies increased by 0.04, 0.04 and 0.06 for YFD, YGFW and YWT, respectively).ConclusionsWe found promising results for the future transition of the Dohne breed from pedigree to genomic selection. A combined genomic evaluation, with the MERINOSELECT evaluation in addition to using metafounders, is expected to enhance the quality of genomic predictions for the Dohne Merino breed.

Suggestions

Du même auteur

Multiple-trait QTL mapping and genomic prediction for wool traits in sheep

Archive ouverte | Bolormaa, Sunduimijid | CCSD

International audience. AbstractBackgroundThe application of genomic selection to sheep breeding could lead to substantial increases in profitability of wool production due to the availability of accurate breeding v...

Using a very low-density SNP panel for genomic selection in a breeding program for sheep

Archive ouverte | Raoul, Jérôme | CCSD

International audience. AbstractBackgroundBuilding an efficient reference population for genomic selection is an issue when the recorded population is small and phenotypes are poorly informed, which is often the cas...

Study of connectedness designs between genetically close populations aiming to increase the interest of genomic selection in small ruminants. Etude de plans de connexion entre populations génétiquement proches visant à accroître l'intérêt de la sélection génomique en petits ruminants

Archive ouverte | Wicki, Marine | CCSD

Numerous studies have shown that the accuracy of genomic predictions, and thus the efficiency of breeding programs, depend on the size and design of the reference population considered. This reference population is the set of anim...

Chargement des enrichissements...