Menke-Hennekam syndrome; delineation of domain-specific subtypes with distinct clinical and DNA methylation profiles.

Archive ouverte

Haghshenas, Sadegheh | Bout, Hidde J | Schijns, Josephine M | Levy, Michael A | Kerkhof, Jennifer | Bhai, Pratibha | Mcconkey, Haley | Jenkins, Zandra A | Williams, Ella M | Halliday, Benjamin J | Huisman, Sylvia A | Lauffer, Peter | de Waard, Vivian | Witteveen, Laura | Banka, Siddharth | Brady, Angela F | Galazzi, Elena | van Gils, Julien | Hurst, Anna C E | Kaiser, Frank J | Lacombe, Didier | Martinez-Monseny, Antonio F | Fergelot, Patricia | Monteiro, Fabíola P | Parenti, Ilaria | Persani, Luca | Santos-Simarro, Fernando | Simpson, Brittany N | Alders, Mariëlle | Robertson, Stephen P | Sadikovic, Bekim | Menke, Leonie A

Edité par CCSD ; Cell Press -

International audience. CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.

Suggestions

Du même auteur

Clinical Utility of a Unique Genome-Wide DNA Methylation Signature for KMT2A-Related Syndrome

Archive ouverte | Foroutan, Aidin | CCSD

International audience. Wiedemann–Steiner syndrome (WDSTS) is a Mendelian syndromic intellectual disability (ID) condition associated with hypertrichosis cubiti, short stature, and characteristic facies caused by pa...

Episignature Mapping of TRIP12 Provides Functional Insight into Clark–Baraitser Syndrome

Archive ouverte | van der Laan, Liselot | CCSD

International audience. Clark–Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encode...

Functional correlation of genome‐wide DNA methylation profiles in genetic neurodevelopmental disorders

Archive ouverte | Levy, Michael | CCSD

International audience. An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, an...

Chargement des enrichissements...