Definition of metafounders based on population structure analysis

Archive ouverte

Anglhuber, Christine | Edel, Christian | Pimentel, Eduardo C. G. | Emmerling, Reiner | Götz, Kay-Uwe | Thaller, Georg

Edité par CCSD ; BioMed Central -

International audience. AbstractBackgroundLimitations of the concept of identity by descent in the presence of stratification within a breeding population may lead to an incomplete formulation of the conventional numerator relationship matrix (A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{A}$$\end{document}). Combining A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{A}$$\end{document} with the genomic relationship matrix (G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{G}$$\end{document}) in a single-step approach for genetic evaluation may cause inconsistencies that can be a source of bias in the resulting predictions. The objective of this study was to identify stratification using genomic data and to transfer this information to matrix A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{A}$$\end{document}, to improve the compatibility of A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{A}$$\end{document} and G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{G}$$\end{document}.MethodsUsing software to detect population stratification (ADMIXTURE), we developed an iterative approach. First, we identified 2 to 40 strata (k\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k$$\end{document}) with ADMIXTURE, which we then introduced in a stepwise manner into matrix A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{A}$$\end{document}, to generate matrix AΓ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbf{A}}^{{\varvec{\Gamma}}}$$\end{document} using the metafounder methodology. Improvements in consistency between matrix G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{G}$$\end{document} and AΓ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbf{A}}^{{\varvec{\Gamma}}}$$\end{document} were evaluated by regression analysis and through the comparison of the overall mean and mean diagonal values of both matrices. The approach was tested on genotype and pedigree information of European and North American Brown Swiss animals (85,249). Analyses with ADMIXTURE were initially performed on the full set of genotypes (S1). In addition, we used an alternative dataset where we avoided sampling of closely related animals (S2).ResultsResults of the regression analyses of standard A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{A}$$\end{document} on G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{G}$$\end{document} were – 0.489, 0.780 and 0.647 for intercept, slope and fit of the regression. When analysing S1 data results of the regression for AΓ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbf{A}}^{{\varvec{\Gamma}}}$$\end{document} on G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{G}$$\end{document} corresponding values were – 0.028, 1.087 and 0.807 for k\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k$$\end{document}=7, while there was no clear optimum k\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k$$\end{document}. Analyses of S2 gave a clear optimal k\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k$$\end{document}=24, with − 0.020, 0.998 and 0.817 as results of the regression. For this k\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k$$\end{document} differences in mean and mean diagonal values between both matrices were negligible.ConclusionsThe derivation of hidden stratification information based on genotyped animals and its integration into A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{A}$$\end{document} improved compatibility of the resulting AΓ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbf{A}}^{{\varvec{\Gamma}}}$$\end{document} and G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbf{G}$$\end{document} considerably compared to the initial situation. In dairy breeding populations with large half-sib families as sub-structures it is necessary to balance the data when applying population structure analysis to obtain meaningful results.

Suggestions

Du même auteur

Systematic genotyping of groups of cows to improve genomic estimated breeding values of selection candidates

Archive ouverte | Plieschke, Laura | CCSD

International audience. AbstractBackgroundExtending the reference set for genomic predictions in dairy cattle by adding large numbers of cows with genotypes and phenotypes has been proposed as a means to increase re...

Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle

Archive ouverte | Ertl, Johann | CCSD

International audience. Background Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits and amount to up to 50% of the total genetic variance for conformation traits...

A simple method to separate base population and segregation effects in genomic relationship matrices

Archive ouverte | Plieschke, Laura | CCSD

International audience. AbstractBackgroundGenomic selection and estimation of genomic breeding values (GBV) are widely used in cattle and plant breeding. Several studies have attempted to detect population subdivisi...

Chargement des enrichissements...