Cardiac GR Mediates the Diurnal Rhythm in Ventricular Arrhythmia Susceptibility

Archive ouverte

Tikhomirov, Roman | Oakley, Robert | Anderson, Cali | Xiang, Yirong | Al Othman, Sami | Smith, Matthew | Yaar, Sana | Torre, Eleonora | Li, Jianying | Wilson, Leslie | Goulding, David | Donaldson, Ian | Harno, Erika | Soattin, Luca | Shiels, Holly | Morris, Gwilym | Zhang, Henggui | Boyett, Mark | Cidlowski, John | Mesirca, Pietro | Mangoni, Matteo | D’souza, Alicia

Edité par CCSD ; American Heart Association -

International audience. Rationale: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the early morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood.Objective: The objectives are to investigate the recruitment of transcription factors to time-of-day differentially accessible chromatin that underpins day-night ion channel rhythms and to assess the significance of this for the heart's day-night rhythm in VA susceptibility.Methods and results: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the inactive (zeitgeber time, time of lights on, start of sleep period) and active (time of lights off, start of awake period [ZT12]) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) binding site in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts.Conclusions: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.

Suggestions

Du même auteur

Regulation of sinus node pacemaking and atrioventricular node conduction by HCN channels in health and disease

Archive ouverte | Boyett, Mark | CCSD

International audience. The funny current, If, was first recorded in the heart 40 or more years ago by Dario DiFrancesco and others. Since then, we have learnt that If plays an important role in pacemaking in the si...

Intrinsic Electrical Remodeling Underlies Atrioventricular Block in Athletes

Archive ouverte | Mesirca, Pietro | CCSD

International audience. Rationale: Athletes present with atrioventricular node dysfunction manifesting as atrioventricular block. This can necessitate electronic pacemaker implantation, known to be more frequent in ...

A circadian clock in the sinus node mediates day-night rhythms in Hcn4 and heart rate

Archive ouverte | D’souza, Alicia | CCSD

International audience. Background: Heart rate follows a diurnal variation and slow heart rhythms occur primarily at night.Objective: The lower heart rate during sleep is assumed to be neural in origin but here we t...

Chargement des enrichissements...