Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum

Archive ouverte

Jauffrais, Thierry | Marcaillou-Le Baut, Claire | Herrenknecht, Christine | Truquet, Philippe | Sechet, Veronique | Nicolau, Elodie | Tillmann, Urban | Hess, Philipp

Edité par CCSD ; Elsevier -

Azadinium spinosum (Elbrächter and Tillmann), a small marine dinoflagellate, has been recently described as a de novo producer of azaspiracid-1 and -2 (AZA1 and -2) diarrhoeic toxins. A culture of A. spinosum was established in our laboratory and optimised for pilot-scale production of this organism, to evaluate and understand AZA1 and -2 accumulation and biotransformation in blue mussels (Mytilus edulis) fed with A. spinosum.Adult mussels were continuously exposed to A. spinosum over 1 week in 160 L cylindrical conical tanks. Three different diets were tested for contamination: 5000, 10 000 cells mL−1 of A. spinosum and a mixture of 5000 cells mL−1 of A. spinosum with 5000 cells mL−1 of Isochrysis aff. galbana (T-Iso, CCAP 927/14). During the subsequent period of detoxification (2 weeks), contaminated mussels were continuously fed with 5000 cells mL−1 of T-Iso. Kinetics of accumulation, detoxification and biotransformation were evaluated, as well as the toxin distribution and the effect of A. spinosum on mussel digestive gland tubules.M. edulis fed on A. spinosum in the three tested conditions; this finding confirmed our recent experiments feeding A. spinosum to mussels. The original algal toxins AZA1 and -2, as well as mussel metabolites AZA3 to 12, -17, -19, -21 and -23 were found during these trials. After as little as 6 h, azaspiracid contents in mussels reached the EU regulatory limit, and metabolites were observed in all conditions at approximately 25% of the total AZA content. This fraction exceeded 50% after 24 h, and continued to increase until the end of the study. AZA17 and -19 were found to be the main metabolites, with AZA17 concentrations estimated in the same order of magnitude as that of the main algal toxin, AZA1.Highlights► Azadinium spinosum was cultured and fed to blue mussels (Mytilus edulis). ► Mussels accumulated azaspiracids in less than 6 h to greater than legal limit. ► Biotransformation of algal toxins into shellfish metabolites was also rapid with >25% metabolites observed after 6 h. ► Detoxification speed was comparable with other lipophilic toxins (half-life ca. 11 days). ► Azaspiracids-6, -17 and -19 should also be considered in legislation.

Consulter en ligne

Suggestions

Du même auteur

Effect of Azadinium spinosum on the feeding behaviour and azaspiracid accumulation of Mytilus edulis

Archive ouverte | Jauffrais, Thierry | CCSD

Azadinium spinosum, a small toxic dinoflagellate, was recently isolated and identified as a primary producer of azaspiracid toxins (AZAs). Previous experiments related to AZA accumulation in blue mussels upon direct feeding with A...

Production and Isolation of Azaspiracid-1 and -2 from Azadinium spinosum Culture in Pilot Scale Photobioreactors

Archive ouverte | Jauffrais, Thierry | CCSD

Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological ...

Effect of environmental and nutritional factors on growth and azaspiracid production of the dinoflagellate Azadinium spinosum

Archive ouverte | Jauffrais, Thierry | CCSD

Azadinium spinosum, a small dinoflagellate isolated from the North Sea, is a producer of azaspiracids (AZAs), a group of biotoxins associated with human illness following ingestion of contaminated shellfish. Using batch and contin...

Chargement des enrichissements...