Deep Learning-Based Detection of Seedling Development from Indoor to Outdoor

Archive ouverte

Garbouge, Hadhami | Rasti, Pejman | Rousseau, David

Edité par CCSD ; Springer International Publishing -

International audience. Monitoring plant growth with computer vision is an important topic in plant science. This monitoring can be challenging when plants are located in outdoor conditions due to light variations and other noises. On other hand, there is a lack of annotated datasets available for such outdoor environments to train machine learning algorithms while indoor similar datasets may be more easily available. In this communication, we investigate, for the first time to the best of our knowledge in plant imaging, how to take benefit from model trained in fully controlled environment to build model for an outdoor environment. This is illustrated with a use case recently published for indoor conditions that we revisit and extend. We compare various spatial and spatio-temporal neural network architectures including long-short term memory convolutional neural network, time distributed convolutional neural network and transformer. While the spatio-temporal architectures outperform the spatial one in indoor conditions, the temporal information appears to be degraded by the presence of shadows due to the variation of light in outdoor conditions. We introduce a specific data augmentation and transfer learning approach which enables to reach a performance of 91% of good classifications with very limited effort of annotation.

Consulter en ligne

Suggestions

Du même auteur

Growth Data—An automatic solution for seedling growth analysis via RGB-Depth imaging sensors

Archive ouverte | Couasnet, Geoffroy | CCSD

International audience. We describe Growth Data, a software for seedling growth analysis from time lapse acquired in top view via RGB-Depth low-cost sensors. The software is suited for the observation of young plant...

L’imagerie au service de la sélection variétale. L’imagerie au service de la sélection variétale: L’imagerie hyper- et multispectrale peut permettre de développer une méthode de phénotypage plus rapide que les notations visuelles.Exemple des avancées pour la fusariose des épis de blé.

Archive ouverte | Cadot, Valérie | CCSD

Disposer d’un outil d’évaluation de la résistance fiable, reproductible, permettant du phénotypage à grande échelle est aujourd’hui indispensable pour identifier de potentielles sources de résistance et pour mieux en comprendre le...

Toward Joint Acquisition-Annotation of Images with Egocentric Devices for a Lower-Cost Machine Learning Application to Apple Detection

Archive ouverte | Samiei, Salma | CCSD

International audience. Since most computer vision approaches are now driven by machine learning, the current bottleneck is the annotation of images. This time-consuming task is usually performed manually after the ...

Chargement des enrichissements...