0 avis
Generation of β-like cell subtypes from differentiated human induced pluripotent stem cells in 3D spheroids
Archive ouverte
Edité par CCSD ; Royal Society of Chemistry -
Sequencing data supporting the findings presented in this study were deposited at Zenodo (https://zenodo.org) with the following Digital Object Identifier: 10.5281/zenodo.7960673. All supplementary table data files and supplementary figures prepared for this study are available in the ESI supplementary files provided to the journal.. International audience. Since the identification of four different pancreatic β-cell subtypes and bi-hormomal cells playing a role in the diabetes pathogenesis, the search for in vitro models that mimics such cells heterogeneity became a key priority in experimental and clinical diabetology. We investigated the potential of human induced pluripotent stem cells to lead to the development of the different β-cells subtypes in honeycomb microwell-based 3D spheroids. The glucose-stimulated insulin secretion confirmed the spheroids functionality. Then, we performed a single cell RNA sequencing of the spheroids. Using a knowledge-based analysis with a stringency on the pancreatic markers, we extracted the β-cells INS+/UCN3+ subtype (11%; β1-like cells), the INS+/ST8SIA1+/CD9− subtype (3%, β3-like cells) and INS+/CD9+/ST8SIA1-subtype (1%; β2-like cells) consistently with literature findings. We did not detect the INS+/ST8SIA1+/CD9+ cells (β4-like cells). Then, we also identified four bi-hormonal cells subpopulations including δ-like cells (INS+/SST+, 6%), γ-like cells (INS+/PPY+, 3%), α-like-cells (INS+/GCG+, 6%) and ε-like-cells (INS+/GHRL+, 2%). Using data-driven clustering, we extracted four progenitors’ subpopulations (with the lower level of INS gene) that included one population highly expressing inhibin genes (INHBA+/INHBB+), one population highly expressing KCNJ3+/TPH1+, one population expressing hepatocyte-like lineage markers (HNF1A+/AFP+), and one population expressing stem-like cell pancreatic progenitor markers (SOX2+/NEUROG3+). Furthermore, among the cycling population we found a large number of REST+ cells and CD9+ cells (CD9+/SPARC+/REST+). Our data confirm that our differentiation leads to large β-cell heterogeneity, which can be used for investigating β-cells plasticity under physiological and pathophysiological conditions.