DNA-induced spatial entrapment of general transcription machinery can stabilize gene expression in a nondividing cell

Archive ouverte

Javed, Khayam | Jullien, Jerome | Agarwal, Gaurav | Lawrence, Nicola | Butler, Richard | Ioannou, Pantelis Savvas | Nazir, Farhat | Gurdon, J

Edité par CCSD ; National Academy of Sciences -

International audience. An important characteristic of cell differentiation is its stability. Only rarely do cells or their stem cell progenitors change their differentiation pathway. If they do, it is often accompanied by a malfunction such as cancer. A mechanistic understanding of the stability of differentiated states would allow better prospects of alleviating the malfunctioning. However, such complete information is yet elusive. Earlier experiments performed in Xenopus oocytes to address this question suggest that a cell may maintain its gene expression by prolonged binding of cell type–specific transcription factors. Here, using DNA competition experiments, we show that the stability of gene expression in a nondividing cell could be caused by the local entrapment of part of the general transcription machinery in transcriptionally active regions. Strikingly, we found that transcriptionally active and silent forms of the same DNA template can stably coexist within the same nucleus. Both DNA templates are associated with the gene-specific transcription factor Ascl1, the core factor TBP2, and the polymerase II (Pol-II) ser5 C-terminal domain (CTD) phosphorylated form, while Pol-II ser2 CTD phosphorylation is restricted to the transcriptionally dominant template. We discover that the active and silent DNA forms are physically separated in the oocyte nucleus through partition into liquid–liquid phase-separated condensates. Altogether, our study proposes a mechanism of transcriptional regulation involving a spatial entrapment of general transcription machinery components to stabilize the active form of a gene in a nondividing cell.

Suggestions

Du même auteur

Stochastic combinations of actin regulatory proteins are sufficient to drive filopodia formation

Archive ouverte | Dobramysl, Ulrich | CCSD

International audience. Assemblies of actin and its regulators underlie the dynamic morphology of all eukaryotic cells. To understand how actin regulatory proteins work together to generate actin-rich structures suc...

The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation

Archive ouverte | Aztekin, Can | CCSD

International audience. Regeneration-competent vertebrates are considered to suppress inflammation faster than non-regenerating ones. Hence, understanding the cellular mechanisms affected by immune cells and inflamm...

The genome sequence of segmental allotetraploid peanut Arachis hypogaea

Archive ouverte | Bertioli, David | CCSD

International audience

Chargement des enrichissements...