Forest biomass retrieval approaches from earth observation in different biomes

Archive ouverte

Rodríguez-Veiga, Pedro | Quegan, Shaun | Carreiras, Joao | Persson, Henrik, J | Fransson, Johan, E S | Hoscilo, Agata | Ziółkowski, Dariusz | Stereńczak, Krzysztof | Lohberger, Sandra | Stängel, Matthias | Berninger, Anna | Siegert, Florian | Avitabile, Valerio | Herold, Martin | Mermoz, Stéphane | Bouvet, Alexandre | Le Toan, Thuy | Carvalhais, Nuno | Santoro, Maurizio | Cartus, Oliver | Rauste, Yrjö | Mathieu, Renaud | Asner, Gregory, P | Thiel, Christian | Pathe, Carsten | Schmullius, Chris | Seifert, Frank, Martin | Tansey, Kevin | Balzter, Heiko

Edité par CCSD ; Elsevier -

International audience. The amount and spatial distribution of forest aboveground biomass (AGB) were estimated using a range of regionally developed methods using Earth Observation data for Poland, Sweden and regions in Indonesia (Kalimantan), Mexico (Central Mexico and Yucatan peninsula), and South Africa (Eastern provinces) for the year 2010. These regions are representative of numerous forest biomes and biomass levels globally, from South African woodlands and savannas to the humid tropical forest of Kalimantan. AGB retrieval in each region relied on different sources of reference data, including forest inventory plot data and airborne LiDAR observations, and used a range of retrieval algorithms. This is the widest inter-comparison of regional-to-national AGB maps to date in terms of area, forest types, input datasets, and retrieval methods. The accuracy assessment of all regional maps using independent field data or LiDAR AGB maps resulted in an overall root mean square error (RMSE) ranging from 10 t ha −1 to 55 t ha −1 (37% to 67% relative RMSE), and an overall bias ranging from −1 t ha −1 to +5 t ha −1 at pixel level. The regional maps showed better agreement with field data than previously developed and widely used pan-tropical or northern hemisphere datasets. The comparison of accuracy assessments showed commonalities in error structures despite the variety of methods, input data, and forest biomes. All regional retrievals resulted in overestimation (up to 63 t ha −1) in the lower AGB classes, and underestimation (up to 85 t ha −1) in the higher AGB classes. Parametric model-based algorithms present advantages due to their low

Suggestions

Du même auteur

A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps

Archive ouverte | Araza, Arnan | CCSD

International audience. Over the past decade, several global maps of above-ground biomass (AGB) have been produced, but they exhibit significant differences that reduce their value for climate and carbon cycle model...

An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR

Archive ouverte | Bouvet, Alexandre | CCSD

International audience. Savannahs and woodlands are among the most important biomes in Africa: they cover half of sub-Saharan Africa, provide vital ecosystem services to the rural communities, and play a major part ...

Impacts of the forest definitions adopted by African countries on carbon conservation

Archive ouverte | Mermoz, Stéphane | CCSD

International audience. In this paper, we aim to assess the impacts of the forest definitions adopted by each African country involved in the global climate change programmes of the United Nations on national carbon...

Chargement des enrichissements...