Investigation of PolyVinyl Chloride Plastisol Tissue-Mimicking Phantoms for MR- and Ultrasound-Elastography

Archive ouverte

Chatelin, S. | Breton, Elodie | Arulrajah, Ajeethan | Giraudeau, Céline | Wach, Benoit | Meylheuc, Laurence | Vappou, Jonathan

Edité par CCSD ; Frontiers -

Objective: Realistic tissue-mimicking phantoms are essential for the development, the investigation and the calibration of medical imaging techniques and protocols. Because it requires taking both mechanical and imaging properties into account, the development of robust, calibrated phantoms is a major challenge in elastography. Soft polyvinyl chloride gels in a liquid plasticizer (plastisol or PVCP) have been proposed as soft tissue-mimicking phantoms (TMP) for elasticity imaging. PVCP phantoms are relatively low-cost and can be easily stored over long time periods without any specific requirements. In this work, the preparation of a PVCP gel phantom for both MR and ultrasound-elastography is proposed and its acoustic, NMR and mechanical properties are studied.Materials and methods: The acoustic and magnetic resonance imaging properties of PVCP are measured for different mass ratios between ultrasound speckle particles and PVCP solution, and between resin and plasticizer. The linear mechanical properties of plastisol samples are then investigated over time using not only indentation tests, but also MR and ultrasound-elastography clinical protocols. These properties are compared to typical values reported for biological soft tissues and to the values found in the literature for PVCP gels.Results and conclusions: After a period of two weeks, the mechanical properties of the plastisol samples measured with indentation testing are stable for at least the following 4 weeks (end of follow-up period 43 days after gelation-fusion). Neither the mechanical nor the NMR properties of plastisol gels were found to be affected by the addition of cellulose as acoustic speckle. Mechanical properties of the proposed gels were successfully characterized by clinical, commercially-available MR Elastography and sonoelastography protocols. PVCP with a mass ratio of ultrasound speckle particles of 0.6%–0.8% and a mass ratio between resin and plasticizer between 50 and 70% appears as a good TMP candidate that can be used with both MR and ultrasound-based elastography methods.

Suggestions

Du même auteur

Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts

Archive ouverte | Yusuff, Habeeb | CCSD

International audience. Purposes: This research highlights the need for affordable phantoms for MRI education. Current options are either expensive or limited. A phantom, easy to manufacture and distribute, is propo...

An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissues

Archive ouverte | Chatelin, Simon | CCSD

International audience. Quantitative and accurate measurement of in vivo mechanical properties using dynamic elastography has been the scope of many research efforts over the past two decades. Most of the shear-wave...

Simultaneous fat‐referenced proton resonance frequency shift thermometry and MR elastography for the monitoring of thermal ablations

Archive ouverte | Kim, Kisoo | CCSD

International audience

Chargement des enrichissements...