Algorithmic Learning for Auto-deconvolution of GC-MS Data to Enable Molecular Networking within GNPS

Archive ouverte

Aksenov, Alexander | Laponogov, Ivan | Zhang, Zheng | Doran, Sophie Lf | Belluomo, Ilaria | Veselkov, Dennis | Bittremieux, Wout | Nothias, Louis Felix | Nothias-Esposito, Mélissa | Maloney, Katherine | Misra, Biswapriya | Melnik, Alexey | Jones, Kenneth | Dorrestein, Kathleen | Panitchpakdi, Morgan | Ernst, Madeleine | van Der Hooft, Justin J.J. | Gonzalez, Mabel | Carazzone, Chiara | Amézquita, Adolfo | Callewaert, Chris | Morton, James | Quinn, Robert | Bouslimani, Amina | Albarracín Orio, Andrea | Petras, Daniel | Smania, Andrea | Couvillion, Sneha | Burnet, Meagan | Nicora, Carrie | Zink, Erika | Metz, Thomas | Artaev, Viatcheslav | Humston-Fulmer, Elizabeth | Gregor, Rachel | Meijler, Michael | Mizrahi, Itzhak | Eyal, Stav | Anderson, Brooke | Dutton, Rachel | Lugan, Raphaël | Boulch, Pauline Le | Guitton, Yann | Prévost, Stéphanie | Poirier, Audrey | Dervilly, Gaud | Bizec, Bruno Le | Fait, Aaron | Persi, Noga Sikron | Song, Chao | Gashu, Kelem | Coras, Roxana | Guma, Monica | Manasson, Julia | Scher, Jose | Barupal, Dinesh | Alseekh, Saleh | Fernie, Alisdair | Mirnezami, Reza | Vasiliou, Vasilis | Schmid, Robin | Borisov, Roman | Kulikova, Larisa | Knight, Rob | Wang, Mingxun | Hanna, George | Dorrestein, Pieter | Veselkov, Kirill

Edité par CCSD -

Gas chromatography-mass spectrometry (GC-MS) represents an analytical technique with significant practical societal impact. Spectral deconvolution is an essential step for interpreting GC-MS data. No public GC-MS repositories that also enable repository-scale analysis exist, in part because deconvolution requires significant user input. We therefore engineered a scalable machine learning workflow for the Global Natural Product Social Molecular Networking (GNPS) analysis platform to enable the mass spectrometry community to store, process, share, annotate, compare, and perform molecular networking of GC-MS data. The workflow performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization, using a Fast Fourier Transform-based strategy to overcome scalability limitations. We introduce a “balance score” that quantifies the reproducibility of fragmentation patterns across all samples. We demonstrate the utility of the platform with breathomics analysis applied to the early detection of oesophago-gastric cancer, and by creating the first molecular spatial map of the human volatilome.

Consulter en ligne

Suggestions

Du même auteur

Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data

Archive ouverte | Aksenov, Alexander | CCSD

International audience. We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to stor...

ReDU: a framework to find and reanalyze public mass spectrometry data

Archive ouverte | Jarmusch, Alan | CCSD

International audience

Standardized multi-omics of Earth’s microbiomes reveals microbial and metabolite diversity

Archive ouverte | Shaffer, Justin | CCSD

International audience. Abstract Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities acr...

Chargement des enrichissements...