A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy

Archive ouverte

Manzo, Giorgia | Hind, Charlotte, K | Ferguson, Philip, M | Amison, Richard, T | Hodgson-Casson, Alice, C | Ciazynska, Katarzyna, A | Weller, Bethany, J | Clarke, Maria | Lam, Carolyn | Man, Rico, C H | O’shaughnessy, Blaze | Clifford, Melanie | Bui, Tam, T | Drake, Alex, F | Atkinson, Robert, Andrew | Lam, Jenny, K W | Pitchford, Simon, C | Page, Clive, P | Phoenix, David, A | Lorenz, Christian, D | Sutton, J. Mark | Mason, A. James

Edité par CCSD ; Nature Publishing Group -

International audience. Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide-lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising Damino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs.

Suggestions

Du même auteur

Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity

Archive ouverte | Manzo, Giorgia | CCSD

International audience. Antimicrobial peptides (AMPs) are a potential source of new molecules to counter the increase in antimicrobial resistant infections but a better understanding of their properties is required ...

Temporin L and aurein 2.5 have identical conformations but subtly distinct membrane and antibacterial activities

Archive ouverte | Manzo, Giorgia | CCSD

International audience

LPS-induced Lung Platelet Recruitment Occurs Independently from Neutrophils, PSGL-1, and P-Selectin

Archive ouverte | Cleary, Simon | CCSD

International audience

Chargement des enrichissements...