The Rice DNA-Binding Protein ZBED Controls Stress Regulators and Maintains Disease Resistance After a Mild Drought

Archive ouverte

Zuluaga, Paola A. | Bidzinski, Przemyslaw | Chanclud, Emilie | Ducasse, Aurélie | Cayrol, Bastien | Gomez Selvaraj, Michael | Ishitani, Manabu | Jauneau, Alain | Deslandes, Laurent | Kroj, Thomas | Michel, Corinne | Szurek, Boris | Koebnik, Ralf | Morel, Jean-Benoit, J.-B.

Edité par CCSD ; Frontiers -

BGPI : Equipe 4 : Interactions Céréales Agents Pathogènes (ICAP) ; Equipe 2 : Interactions Virus Insecte Plante (VIP). International audience. Background: Identifying new sources of disease resistance and the corresponding underlying resistance mechanisms remains very challenging, particularly in Monocots. Moreover, the modification of most disease resistance pathways made so far is detrimental to tolerance to abiotic stresses such as drought. This is largely due to negative cross-talks between disease resistance and abiotic stress tolerance signaling pathways. We have previously described the role of the rice ZBED protein containing three Zn-finger BED domains in disease resistance against the fungal pathogen Magnaporthe oryzae. The molecular and biological functions of such BED domains in plant proteins remain elusive.Results: Using Nicotiana benthamiana as a heterologous system, we show that ZBED localizes in the nucleus, binds DNA, and triggers basal immunity. These activities require conserved cysteine residues of the Zn-finger BED domains that are involved in DNA binding. Interestingly, ZBED overexpressor rice lines show increased drought tolerance. More importantly, the disease resistance response conferred by ZBED is not compromised by drought-induced stress.Conclusions: Together our data indicate that ZBED might represent a new type of transcriptional regulator playing simultaneously a positive role in both disease resistance and drought tolerance. We demonstrate that it is possible to provide disease resistance and drought resistance simultaneously.

Suggestions

Du même auteur

Transcriptional basis of drought-induced susceptibility to the rice blast fungus Magnaporthe oryzae

Archive ouverte | Bidzinski, Przemyslaw | CCSD

BGPI : équipe 4. Plants are often facing several stresses simultaneously. Understanding how they reactand the way pathogens adapt to such combinational stresses is poorly documented.Here, we developed an experimenta...

Rice (Oriza sativa) defense against rice blast disease (Magnaporthe Oryzae) under drought stress

Archive ouverte | Bidzinski, Przemyslaw | CCSD

BGPI : équipe 4. National audience

Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence

Archive ouverte | Chanclud, Emilie | CCSD

BGPI : équipe 4. International audience. Plants produce cytokinin (CK) hormones for controlling key developmental processes like source/sink distribution, cell division or programmed cell-death. Some plant pathogens...

Chargement des enrichissements...