The Phytophthora parasitica RXLR effector penetration-specific effector 1 favours Arabidopsis thaliana infection by interfering with auxin physiology

Archive ouverte

Evangelisti, Edouard | Govetto, Benjamin | Minet-Kebdani, Naima | Kuhn, Marie-Line | Attard, Agnès | Ponchet, Michel | Panabières, Franck | Gourgues, Mathieu

Edité par CCSD ; Wiley -

International audience. Pathogenic oomycetes have evolved RXLR effectors to thwart plant defense mechanisms and invade host tissues. We analysed the function of one of these effectors (Penetration-Specific Effector 1 (PSE1)) whose transcript is transiently accumulated during penetration of host roots by the oomycete Phytophthora parasitica. Expression of PSE1 protein in tobacco (Nicotiana tabacum and Nicotiana benthamiana) leaves and in Arabidopsis thaliana plants was used to assess the role of this effector in plant physiology and in interactions with pathogens. A pharmacological approach and marker lines were used to charcterize the A. thaliana phenotypes. Expression of PSE1 in A. thaliana led to developmental perturbations associated with low concentrations of auxin at the root apex. This modification of auxin content was associated with an altered distribution of the PIN4 and PIN7 auxin efflux carriers. The PSE1 protein facilitated plant infection: it suppressed plant cell death activated by Pseudomonas syringae avirulence gene AvrPto and Phytophthora cryptogea elicitin cryptogein in tobacco and exacerbated disease symptoms upon inoculation of transgenic A. thaliana plantlets with P. parasitica in an auxin-dependant manner. We propose that P.parasitica secretes the PSE1 protein during the penetration process to favour the infection by locally modulating the auxin content. These results support the hypothesis that effectors from plant pathogens may act on a limited set of targets, including hormones.

Consulter en ligne

Suggestions

Du même auteur

Transcriptome dynamics of Arabidopsis thaliana root penetration by the oomycete pathogen Phytophthora parasitica

Archive ouverte | Attard, Agnès | CCSD

International audience. Background: Oomycetes are a group of filamentous microorganisms that includes both animal and plant pathogens and causes major agricultural losses. Phytophthora species can infect most crops ...

Biology and ecology of biofilms formed by a plant pathogen Phytophthora parasitica: from biochemical ecology to ecological engineering

Archive ouverte | Theodorakopoulos, Nicolas | CCSD

National audience. In nature, the organisation of microbial species into biofilms has a great influence on local environments and in human or plant diseases. This important trait of prokaryotes and eukaryotes is poo...

Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. nicotianae Breda de Haan)

Archive ouverte | Attard, Agnès | CCSD

International audience. Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no ef...

Chargement des enrichissements...