Using the product threshold model for estimating separately the effect of temperature on male and female fertility

Archive ouverte

Tusell, Llibertat | David, Ingrid | Bodin, Loys, L. | Legarra, Andres | Rafel, O. | Lopez-Bejar, M. | Piles, M.

Edité par CCSD ; American Society of Animal Science -

International audience. Animals under environmental thermal stress conditions have reduced fertility due to impairment of some mechanisms involved in their reproductive performance that are different in males and females. As a consequence, the most sensitive periods of time and the magnitude of effect of temperature on fertility can differ between sexes. The objective of this study was to estimate separately the effect of temperature in different periods around the insemination time on male and on female fertility by using the product threshold model. This model assumes that an observed reproduction outcome is the result of the product of 2 unobserved variables corresponding to the unobserved fertilities of the 2 individuals involved in the mating. A total of 7,625 AI records from rabbits belonging to a line selected for growth rate and indoor daily temperature records were used. The average maximum daily temperature and the proportion of days in which the maximum temperature was greater than 25°C were used as temperature descriptors. These descriptors were calculated for several periods around the day of AI. In the case of males, 4 periods of time covered different stages of the spermatogenesis, the transit through the epididymus of the sperm, and the day of AI. For females, 5 periods of time covered the phases of preovulatory follicular maturation including day of AI and ovulation, fertilization and peri-implantational stage of the embryos, embryonic and early fetal periods of gestation, and finally, late gestation until birth. The effect of the different temperature descriptors was estimated in the corresponding male and female liabilities in a set of threshold product models. The temperature of the day of AI seems to be the most relevant temperature descriptor affecting male fertility because greater temperature records on the day of AI caused a decrease in male fertility (−6% in male fertility rate with respect to thermoneutrality). Departures from the thermal zone in temperature descriptors covering several periods before AI until early gestation had a negative effect on female fertility, with the pre- and peri-implantational period of the embryos being especially sensitive (from −5 to −6% in female fertility rate with respect to thermoneutrality). The latest period of gestation was unaffected by the temperature. Overall, magnitude and persistency of the temperatures reached in the conditions of this study do not seem to be great enough to have a large effect on male and female rabbit fertility.

Suggestions

Du même auteur

Interaction of genotype × artificial insemination conditions for male effect on fertility and prolificacy

Archive ouverte | Tusell, Llibertat | CCSD

International audience. Failures in fertilization or embryogenesis have been shown to be partly the result of poor semen quality. When AI is practiced, fertilization rate depends on the number and quality of spermat...

Daily exposure to summer temperatures affects the motile subpopulation structure of epididymal sperm cells but not male fertility in an in vivo rabbit model

Archive ouverte | Maya-Soriano, M.J. | CCSD

International audience. High temperatures have negative effects on sperm quality leading to temporary or permanent sterility. The aim of the study was to assess the effect of long exposure to summer circadian heat s...

Different ways to model biological relationships between fertility and pH of the semen in rabbits

Archive ouverte | Tusell, Llibertat | CCSD

Part of it was carried out during a visit by the first author to INRA, Toulouse. Llibertat Tusell Palomero received a fellowship from the INIA. The authors dedicate this work to Josep Terrades i Colom for his valuable cooperation ...

Chargement des enrichissements...