0 avis
Functional Characterization of the Arabidopsis Abscisic Acid Transporters NPF4.5 and NPF4.6 in Xenopus Oocytes
Archive ouverte
Dynamic reprogramming of gene regulatory networks (GRNs) enables organisms to rapidlyrespond to environmental perturbation. However, the underlying transient interactionsbetween transcription factors (TFs) and genome-wide targets typically elude biochemicaldetection. Here, we capture both stable and transient TF-target interactions genome-widewithin minutes after controlled TF nuclear import using time-series chromatin immunoprecipitation(ChIP-seq) and/or DNA adenine methyltransferase identification (DamID-seq).The transient TF-target interactions captured uncover the early mode-of-action of NIN-LIKEPROTEIN 7 (NLP7), a master regulator of the nitrogen signaling pathway in plants. Thesetransient NLP7 targets captured in root cells using temporal TF perturbation account for 50%of NLP7-regulated genes not detectably bound by NLP7 in planta. Rapid and transient NLP7binding activates early nitrogen response TFs, which we validate to amplify the NLP7-initiatedtranscriptional cascade. Our approaches to capture transient TF-target interactions genomewidecan be applied to validate dynamic GRN models for any pathway or organism of interest.