Cerebellar compartmentation of prion pathogenesis

Archive ouverte

Ragagnin, Audrey | Ezpeleta, Juliette | Guillemain, Aurélie | Boudet-Devaud, François | Haeberlé, Anne-Marie | Demais, Valérie | Vidal, Catherine | Demuth, Stanislas | Béringue, Vincent | Kellermann, Odile | Schneider, Benoit | Grant, Nancy | Bailly, Yannick

Edité par CCSD ; Wiley -

International audience. In prion diseases, the brain lesion profile is influenced by the prion “strain” properties, the invasion route to the brain, and still unknown host cell‐specific parameters. To gain insight into those endogenous factors, we analyzed the histopathological alterations induced by distinct prion strains in the mouse cerebellum. We show that 22L and ME7 scrapie prion proteins (PrP22L, PrPME7), but not bovine spongiform encephalopathy PrP6PB1, accumulate in a reproducible parasagittal banding pattern in the cerebellar cortex of infected mice. Such banding pattern of PrP22L aggregation did not depend on the neuroinvasion route, but coincided with the parasagittal compartmentation of the cerebellum mostly defined by the expression of zebrins, such as aldolase C and the excitatory amino acid transporter 4, in Purkinje cells. We provide evidence that Purkinje cells display a differential, subtype‐specific vulnerability to 22L prions with zebrin‐expressing Purkinje cells being more resistant to prion toxicity, while in stripes where PrP22L accumulated most zebrin‐deficient Purkinje cells are lost and spongiosis accentuated. In addition, in PrP22L stripes, enhanced reactive astrocyte processes associated with microglia activation support interdependent events between the topographic pattern of Purkinje cell death, reactive gliosis and PrP22L accumulation. Finally, we find that in preclinically‐ill mice prion infection promotes at the membrane of astrocytes enveloping Purkinje cell excitatory synapses, upregulation of tumor necrosis factor‐α receptor type 1 (TNFR1), a key mediator of the neuroinflammation process. These overall data show that Purkinje cell sensitivity to prion insult is locally restricted by the parasagittal compartmentation of the cerebellum, and that perisynaptic astrocytes may contribute to prion pathogenesis through prion‐induced TNFR1 upregulation.

Suggestions

Du même auteur

Production of seedable Amyloid-β peptides in model of prion diseases upon PrPSc-induced PDK1 overactivation

Archive ouverte | Ezpeleta, Juliette | CCSD

International audience

Protective role of cellular prion protein against TNFα-mediated inflammation through TACE α-secretase

Archive ouverte | Ezpeleta, Juliette | CCSD

International audience. Although cellular prion protein PrPC is well known for its implication in Transmissible Spongiform Encephalopathies, its functions remain elusive. Combining in vitro and in vivo approaches, w...

PDK1 decreases TACE-mediated α-secretase activity and promotes disease progression in prion and Alzheimer's diseases

Archive ouverte | Pietri, Mathéa | CCSD

International audience. alpha-secretase-mediated cleavage of amyloid precursor protein (APP) precludes formation of neurotoxic amyloid-beta (A beta) peptides, and alpha-cleavage of cellular prion protein (Pr-Pc) pre...

Chargement des enrichissements...