Multiple-trait QTL mapping and genomic prediction for wool traits in sheep

Archive ouverte

Bolormaa, Sunduimijid | Swan, Andrew A. | Brown, Daniel J. | Hatcher, Sue | Moghaddar, Nasir | van Der Werf, Julius H. | Goddard, Michael E. | Daetwyler, Hans D.

Edité par CCSD ; BioMed Central -

International audience. AbstractBackgroundThe application of genomic selection to sheep breeding could lead to substantial increases in profitability of wool production due to the availability of accurate breeding values from single nucleotide polymorphism (SNP) data. Several key traits determine the value of wool and influence a sheep’s susceptibility to fleece rot and fly strike. Our aim was to predict genomic estimated breeding values (GEBV) and to compare three methods of combining information across traits to map polymorphisms that affect these traits.MethodsGEBV for 5726 Merino and Merino crossbred sheep were calculated using BayesR and genomic best linear unbiased prediction (GBLUP) with real and imputed 510,174 SNPs for 22 traits (at yearling and adult ages) including wool production and quality, and breech conformation traits that are associated with susceptibility to fly strike. Accuracies of these GEBV were assessed using fivefold cross-validation. We also devised and compared three approximate multi-trait analyses to map pleiotropic quantitative trait loci (QTL): a multi-trait genome-wide association study and two multi-trait methods that use the output from BayesR analyses. One BayesR method used local GEBV for each trait, while the other used the posterior probabilities that a SNP had an effect on each trait.ResultsBayesR and GBLUP resulted in similar average GEBV accuracies across traits (~0.22). BayesR accuracies were highest for wool yield and fibre diameter (>0.40) and lowest for skin quality and dag score (<0.10). Generally, accuracy was higher for traits with larger reference populations and higher heritability. In total, the three multi-trait analyses identified 206 putative QTL, of which 20 were common to the three analyses. The two BayesR multi-trait approaches mapped QTL in a more defined manner than the multi-trait GWAS. We identified genes with known effects on hair growth (i.e. FGF5, STAT3, KRT86, and ALX4) near SNPs with pleiotropic effects on wool traits.ConclusionsThe mean accuracy of genomic prediction across wool traits was around 0.22. The three multi-trait analyses identified 206 putative QTL across the ovine genome. Detailed phenotypic information helped to identify likely candidate genes.

Suggestions

Du même auteur

Accuracy of imputation to whole-genome sequence in sheep

Archive ouverte | Bolormaa, Sunduimijid | CCSD

International audience. AbstractBackgroundThe use of whole-genome sequence (WGS) data for genomic prediction and association studies is highly desirable because the causal mutations should be present in the data. Th...

A conditional multi-trait sequence GWAS discovers pleiotropic candidate genes and variants for sheep wool, skin wrinkle and breech cover traits

Archive ouverte | Bolormaa, Sunduimijid | CCSD

International audience. AbstractBackgroundImputation to whole-genome sequence is now possible in large sheep populations. It is therefore of interest to use this data in genome-wide association studies (GWAS) to inv...

Genomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populations

Archive ouverte | Moghaddar, Nasir | CCSD

International audience. AbstractBackgroundWhole-genome sequence (WGS) data could contain information on genetic variants at or in high linkage disequilibrium with causative mutations that underlie the genetic variat...

Chargement des enrichissements...