0 avis
Evidence for widespread positive and purifying selection across the European rabbit (Oryctolagus cuniculus) genome
Archive ouverte
Edité par CCSD ; Oxford University Press (OUP) -
International audience. The nearly neutral theory of molecular evolution predicts that the efficacy of both positive and purifying selection is a function of the long-term effective population size (Ne) of a species. Under this theory, the efficacy of natural selection should increase with Ne. Here, we tested this simple prediction by surveying ;1.5 to 1.8 Mb of protein coding sequence in the two subspecies of the European rabbit (Oryctolagus cuniculus algirus and O. c. cuniculus), a mammal species characterized by high levels of nucleotide diversity and Ne estimates for each subspecies on the order of 1 106. When the segregation of slightly deleterious mutations and demographic effects were taken into account, we inferred that .60% of amino acid substitutions on the autosomes were driven to fixation by positive selection. Moreover, we inferred that a small fraction of new amino acid mutations (,4%) are effectively neutral (defined as 0, Nes,1) and that this fraction was negatively correlated with a gene’s expression level. Consistent with models of recurrent adaptive evolution, we detected a negative correlation between levels of synonymous site polymorphism and the rate of protein evolution, although the correlation was weak and nonsignificant. No systematic X chromosome–autosome difference was found in the efficacy of selection. For example, the proportion of adaptive substitutions was significantly higher on the X chromosome comparedwith the autosomes in O. c. algirus but not in O. c. cuniculus. Our findings support widespread positive and purifying selection in rabbits and add to a growing list of examples suggesting that differences in Ne among taxa play a substantial role in determining rates and patterns of protein evolution.