Error rate for imputation from the Illumina BovineSNP50 chip to the Illumina BovineHD chip

Archive ouverte

Schrooten, Chris | Dassonneville, Romain | Ducrocq, Vincent | Brøndum, Rasmus F. | Lund, Mogens S. | Chen, Jun | Liu, Zengting | González-Recio, Oscar | Pena, Juan | Druet, Tom

Edité par CCSD ; BioMed Central -

Background Imputation of genotypes from low-density to higher density chips is a cost-effective method to obtain high-density genotypes for many animals, based on genotypes of only a relatively small subset of animals (reference population) on the high-density chip. Several factors influence the accuracy of imputation and our objective was to investigate the effects of the size of the reference population used for imputation and of the imputation method used and its parameters. Imputation of genotypes was carried out from 50 000 (moderate-density) to 777 000 (high-density) SNPs (single nucleotide polymorphisms). Methods The effect of reference population size was studied in two datasets: one with 548 and one with 1289 Holstein animals, genotyped with the Illumina BovineHD chip (777 k SNPs). A third dataset included the 548 animals genotyped with the 777 k SNP chip and 2200 animals genotyped with the Illumina BovineSNP50 chip. In each dataset, 60 animals were chosen as validation animals, for which all high-density genotypes were masked, except for the Illumina BovineSNP50 markers. Imputation was studied in a subset of six chromosomes, using the imputation software programs Beagle and DAGPHASE. Results Imputation with DAGPHASE and Beagle resulted in 1.91% and 0.87% allelic imputation error rates in the dataset with 548 high-density genotypes, when scale and shift parameters were 2.0 and 0.1, and 1.0 and 0.0, respectively. When Beagle was used alone, the imputation error rate was 0.67%. If the information obtained by Beagle was subsequently used in DAGPHASE, imputation error rates were slightly higher (0.71%). When 2200 moderate-density genotypes were added and Beagle was used alone, imputation error rates were slightly lower (0.64%). The least imputation errors were obtained with Beagle in the reference set with 1289 high-density genotypes (0.41%). Conclusions For imputation of genotypes from the 50?k to the 777?k SNP chip, Beagle gave the lowest allelic imputation error rates. Imputation error rates decreased with increasing size of the reference population. For applications for which computing time is limiting, DAGPHASE using information from Beagle can be considered as an alternative, since it reduces computation time and increases imputation error rates only slightly.

Suggestions

Du même auteur

A common reference population from four European Holstein populations increases reliability of genomic predictions

Archive ouverte | Lund, Mogens S. | CCSD

Background: Size of the reference population and reliability of phenotypes are crucial factors influencing the reliability of genomic predictions. It is therefore useful to combine closely related populations. Increased accuracies...

Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals

Archive ouverte | Bouwman, Aniek C. | CCSD

International audience. Stature is affected by many polymorphisms of small effect in humans(1). In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number ...

Across breed QTL detection and genomic prediction in French and Danish dairy cattle breeds

Archive ouverte | van den Berg, Irene | CCSD

absent

Chargement des enrichissements...