Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring

Archive ouverte

Elliott, Kyle H. | Chivers, Lorraine S. | Bessey, Lauren | Gaston, Anthony J. | Hatch, Scott A. | Kato, Akiko | Osborne, Orla | Ropert‐coudert, Yan | Speakman, John R. | Hare, James F.

Edité par CCSD ; BioMed Central -

International audience. Background: Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate for increased tailwind speed and increase air speed to compensate for increased crosswind speed. In addition, animals are expected to vary their foraging effort in time and space to maximize energy efficiency across variable windscapes. Results: We examined the influence of wind on seabird (thick-billed murre Uria lomvia and black-legged kittiwake Rissa tridactyla) foraging behavior. Airspeed and mechanical flight costs (dynamic body acceleration and wing beat frequency) increased with headwind speed during commuting flights. As predicted, birds adjusted their airspeed to compensate for crosswinds and to reduce the effect of a headwind, but they could not completely compensate for the latter. As we were able to account for the effect of sampling frequency and wind speed, we accurately estimated commuting flight speed with no wind as 16.6 ms−1 (murres) and 10.6 ms−1 (kittiwakes). High winds decreased delivery rates of schooling fish (murres), energy (murres) and food (kittiwakes) but did not impact daily energy expenditure or chick growth rates. During high winds, murres switched from feeding their offspring with schooling fish, which required substantial above-water searching, to amphipods, which required less above-water searching. Conclusions: Adults buffered the adverse effect of high winds on chick growth rates by switching to other food sources during windy days or increasing food delivery rates when weather improved.

Suggestions

Du même auteur

Accelerometry predicts daily energy ependiture in a bird with high activity levels

Archive ouverte | H. Elliott, Kyle | CCSD

International audience. Animal ecology is shaped by energy costs, yet it is difficult to measure fine-scale energy expenditure in the wild. Because metabolism is often closely cor-related with mechanical work, accel...

Modeling foraging range for breeding colonies of thick-billed murres Uria lomvia in the Eastern Canadian Arctic and potential overlap with industrial development

Archive ouverte | J. Gaston, Anthony | CCSD

International audience. Mapping areas of conservation concern for wildlife in the Arctic is urgently required to evaluate the impact of accelerating development in northern regions. There is substantial evidence tha...

Age-related variation in energy expenditure in a longlived bird within the envelope of an energy ceiling

Archive ouverte | H. Elliott, Kyle | CCSD

International audience. 1. Energy expenditure in wild animals can be limited (i) intrinsically by physiological processes that constrain an animal's capacity to use energy, (ii) extrinsically by energy availability ...

Chargement des enrichissements...